Answer:
Case A
Explanation:
given,
size of bacteria = 1 mm x 1 mm
velocity = 20 mm/s
size of the swimmer = 1.5 m x 1.5 m
velocity of swimmer = 3 m/s
Viscous force

for the bacteria


for the swimmer


from the above force calculation
In case B inertial force that represent mass is more than the inertial force in case of bacteria.
Viscous force is dominant in case of bacteria.
So, In Case A viscous force will be dominant.
Answer:
I=0.0361 kg.m^2
Explanation:
Torque is the rotational equivalent of a force
Torque= perpendicular distance r X Force F
Torque T = I(moment of inertia) X α (angular acceleration)
T= Iα
r= 0.0285m
F= 1.9 x 10^3
T=0.0285 x 1.9 x 10^3
T= 54.15Nm
I=T/α
I=54.15/150
I=0.361 kg.m^2
The number of electrons emitted from the metal per second increases if the intensity of the incident light is increased.
Answer: Option B
<u>Explanation:</u>
As a result of photoelectric effect, electrons are emitted by the light incident on a metal surface. The emitted electrons count and its kinetic energy can measure as the function of light intensity and frequency. Like physicists, at the 20th century beginning, it should be expected that the light wave's energy (its intensity) will be transformed into the kinetic energy of emitted electrons.
In addition, the electrons count emitting from metal must vary with light wave frequency. This frequency relationship was expected because the electric field oscillates due to the light wave and the metal electrons react to different frequencies. In other words, the number of electrons emitted was expected to be frequency dependent and their kinetic energy should be dependent on the intensity (constant wavelength) of light.
Thus, the maximum in kinetic energy of electrons emitted increases with increase in light's frequency and is experimentally independent of light intensity. So, the number of emitted electrons is proportionate to the intensity of the incident light.
Sound source is at rest, you are moving with velocity v, f = frequency, c = speed of sound:
f = f0(1 + v/c)
115 = 100(1 + v/343)
115 = 100 + 100v/343
15 = 100v/343
v = 15*343/100
<span>
v = 51,45 m/s </span>
Answer:
block velocity v = 0.09186 = 9.18 10⁻² m/s and speed bollet v₀ = 11.5 m / s
Explanation:
We will solve this problem using the concepts of the moment, let's try a system formed by the two bodies, the bullet and the block; In this system all scaffolds during the crash are internal, consequently, the moment is preserved.
Let's write the moment in two moments before the crash and after the crash, let's call the mass of the bullet (m) and the mass of the Block (M)
Before the crash
p₀ = m v₀ + 0
After the crash
= (m + M) v
p₀ = 
m v₀ = (m + M) v (1)
Now let's lock after the two bodies are joined, in this case the mechanical energy is conserved, write it in two moments after the crash and when you have the maximum compression of the spring
Initial
Em₀ = K = ½ m v2
Final
E
= Ke = ½ k x2
Emo = E
½ m v² = ½ k x²
v² = k/m x²
Let's look for the spring constant (k), with Hook's law
F = -k x
k = -F / x
k = - 0.75 / -0.25
k = 3 N / m
Let's calculate the speed
v = √(k/m) x
v = √ (3/8.00) 0.15
v = 0.09186 = 9.18 10⁻² m/s
This is the spped of the block plus bullet rsystem right after the crash
We substitute calculate in equation (1)
m v₀ = (m + M) v
v₀ = v (m + M) / m
v₀ = 0.09186 (0.008 + 0.992) /0.008
v₀ = 11.5 m / s