Answer:
S(t) = -4.9t^2 + Vot + 282.24
Step-by-step explanation:
Since the rocket is launched from the ground, So = 0 and S(t) = 0
Using s(t)=gt^2+v0t+s0 to get time t
Where g acceleration due to gravity = -4.9m/s^2. and
initial velocity = 39.2 m/a
0 = -4.9t2 + 39.2t
4.9t = 39.2
t = 8s
Substitute t in the model equation
S(t) = -49(8^2) + 3.92(8) + So
Let S(t) =0
0 = - 313.6 + 31.36 + So
So = 282.24m
The equation that can be used to model the height of the rocket after t seconds will be:
S(t) = -4.9t^2 + Vot + 282.24
Answer:
ku hgkjfghdehfv bfd
Step-by-step explanation:
Answer: 48.54101966249685
Step-by-step explanation:
Answer: 283
Step-by-step explanation:
To do this, it is helpful to get an equation you can use to solve any term.
This equation is:

So simply plug in 31 for n to get



Answer:
11. 3^2 • 3^5 < 3^8
12. 3^3 • 3^3 > 3^5
13. Option C.
Step-by-step explanation:
11. Which of the following expressions is true?
A. 4^3• 4^4 = 412
4^3• 4^4 = 4^7 = 16384 ❌
B. 5^2 • 5^3 > 5^5
5^2 • 5^3 = 5^5 ❌
C. 3^2 • 3^5 < 3^8
3^2 • 35 = 315 ✔️
D. 5^2 • 54 = 58
5^2 • 54 = 1350 ❌
12. Which of the following expressions is true?
A. 8^3 • 8^2 < 8^4
8^3 • 8^2 = 8^5 ❌
B. 4^4 • 4^4 = 4^16
4^4 • 4^4 = 4^8 ❌
C. 2^2 • 2^6 < 2^8
2^2 • 2^6 = 2^8 ❌
D. 3^3 • 3^3 > 3^5
3^3 • 3^3 = 3^6 ✔️
13. Write the value of the expression: 3^4/3^4
3^4/3^4 = 1
The correct answer is C. 1 ✔️