Answer:
400°C
Explanation:
22,000 cal / (0.11 cal/g°C x 500 g) = 400°C
Answer:
C.) HOCl Ka=3.5x10^-8
Explanation:
In order to a construct a buffer of pH= 7.0 we need to find the pKa values of all the acids given below
we Know that
pKa= -log(Ka)
therefore
A) pKa of HClO2 = -log(1.2 x 10^-2)
=1.9208
B) similarly PKa of HF= -log(7.2 x 1 0^-4)= 2.7644
C) pKa of HOCl= -log(3.5 x 1 0^-8)= 7.45
D) pKa of HCN = -log(4 x 1 0^-10)= 9.3979
If we consider the Henderson- Hasselbalch equation for the calculation of the pH of the buffer solution
The weak acid for making the buffer must have a pKa value near to the desired pH of the weak acid.
So, near to value, pH=7.0. , the only option is HOCl whose pKa value is 7.45.
Hence, HOCl will be chosen for buffer construction.
Nuclear reaction: ¹¹C → ¹¹B + e⁺(positron) + ve(electron neutrino).<span><span><span><span>
</span></span></span></span>Beta
decay is radioactive decay<span> in which
a beta ray and a neutrino are emitted from an atomic
nucleus.
There are two types of beta
decay: beta minus and beta
plus. In beta minus decay, neutron is converted to a
proton and an electron and
an electron antineutrino and in beta
plus decay, a proton is converted to a neutron and positron and an electron neutrino, so mass number does not change.</span>
First question. Applying ideal gas equation PV=nRT, P= 101.3 x 10³Pa = 1atm. therefore, 1 x 260 x 10^-3 = n x 0.082 x 294.( Temperature in kelvin=273+21). n = 0.01 moles. Volume of gas at STP= n x 22.4 = 0.01x22.4 = 0.224L. Hope this helps