The correct answer is option C, 5.02 x 10²² carbon atoms
Atomic mass of C = 12 g/mol
According to Avogadro, 1 mole of C has 6.023 x 10²³C atoms
Now 1 mole of C is equal to 12 g
Therefore, 12 g of C = 6.023 x 10²³ C atoms
1 g of C =
C atoms = 5.02 x 10²² C atoms
Answer:
The mole is important because it allows chemist to work with a subatomic world with macro world units and amount. Atoms molecules and formula units are very small and very difficult to work with usually. However the mole allows a chemist to work with amount large enough to use.
Answer:
3.82 x 10²¹ molecules As₂O₃
Explanation:
To find the amount of molecules arsenic (III) oxide (As₂O₃), you need to (1) convert kg to lbs, then (2) convert g As₂O₃ to moles As₂O₃ (via molar mass), and then (3) convert moles to molecules (via Avogadro's number).
1 kilogram = 2.2 lb
Molar Mass (As₂O₃): 2(74.992 g/mol) + 3(15.998 g/mol)
Molar Mass (As₂O₃): 197.978 g/mol
Avogadro's Number:
6.022 x 10²³ molecules = 1 mole
0.0146 g As₂O₃ 1 kg 189 lb
------------------------ x --------------- x ------------------ x ................
1 kg 2.2 lb
1 mole 6.022 x 10²³ molecules
x ------------------ x --------------------------------------- = 3.82 x 10²¹ molecules As₂O₃
197.978 g 1 mole
<span>Answer:
H-C-N H-N-C C-H-N
Notice that C-H-N is the same as N-H-C just written backwards. ( i.e. they have the same connectivtiy.) You can exclude the last one with H in the middle since H has two bonds and 4 electrons around it. At this point you couldn't differentiate between the first two, so I would give you the connectivity in such a problem, which in this case is H-C-N.</span>
Thomson's model included Protons and Electrons. His model is referred to as 'Plum Pudding' because of it.