You can calculate potential energy by:
U = m.g.h
Where, U = potential energy
m = mass
g = acceleration due to gravity
h = height
Hope this helps!
Answer:
Epithelial tissue and Muscle tissue
Explanation:
Answer:
This does not violate the conservation of energy.
Explanation:
This does not violate the conservation of energy because the hot body gives energy in the form of heat to the colder body, this second absorbs energy. This will be the case until both bodies reach the same temperature, reaching thermal equilibrium and reducing the transfer of thermal energy. In this way the energy was only transferred from one body to another but the total energy of the system (body 1 plus body 2) will be the same as in the beginning, respecting the principle of conservation of energy or also called the first principle of thermodynamics .
The part of physics that studies these processes is in turn called heat transfer or heat transfer or thermal transfer. Heat transfer occurs whenever there is a thermal gradient or when two systems with different temperatures come into contact. The process persists until thermal equilibrium is reached, that is, until temperatures are equalized. When there is a temperature difference between two objects or regions close enough, the heat transfer cannot be stopped, it can only be slowed down.
Answer:
15 protons and 18 electrons
General Formulas and Concepts:
<u>Chemistry</u>
- Reading a Periodic Table
- Element Number
- Neutral Atoms
- Ions
Explanation:
We are given the element P. P is 15 on the Periodic Table, meaning it has 15 protons and 15 electrons (all elements are in neutral form).
P³⁻ ion means the element now has a negative charge of 3. We know protons have a positive charge and electrons have a negative charge. 3- means we will have more electrons than protons.
Therefore, P³⁻ would have 15 protons and <em>18</em> electrons:
15 (+) + 18 (-) = 3 (-)
Answer:
D. the same as force. the applied force per cross-sectional area.
Explanation:
Tensile stress of a material is defined as the ratio of the applied force on the material to its cross sectional area. this is expressed mathematically as;
Tensile stress = Force/cross sectional area
Tensile stress = F/A
Force is measured in newton while cross sectional area is measured in m
Hence the unit of Tensile stress is N/m²