Answer:
C
Explanation:
Given that a liquid at rest in a fixed container exerts a force perpendicular to the wall of the container. Two students make claims about the microscopic cause of this force. Student A says that the force exerted by individual molecules as they bounce off the wall is always perpendicular to the wall. Student B says that the molecules may strike the wall at angles that are not perpendicular. Which student is correct and why?
The correct answer is option C
Student B . The molecules in a liquid are in random motion at the microscopic scale. For every atom that hits at an angle to one side of perpendicular, there is likely to be another atom hitting at the same speed at the same angle on the other side of perpendicular. On average the nonperpendicular components cancel
Answer:
T = 3.475 s
Time period is independent from mass
Explanation:
- To reduce the human error in taking any measurements we take multiple N number of readings. Then sum up all the readings and divide by N to find an average. The error between each individual reading and the actual reading is reduced by repetition.
- We use the plot of T^2 against L to form a linear relationship between two variables. We square the entire the equation for linearize the equation.
- Given, L = 3 m . The time period is approximated by a pendulum expression given as:
T = 2*pi*sqrt ( L / g )
Where, g is the gravitational acceleration 9.81 m/s^2
- Then we have:
T = 2*pi*sqrt ( 3 / 9.81 )
T = 3.475 s
- From above expression we see that time period is independent from the mass at the end of the string but a function of pendulum geometry and kinetics.
Answer:
The response to this question is as follows:
Explanation:
The whole question and answer can be identified in the file attached, please find it.