Answer:
Hiiicxfzglkhxvdvjiyxntdhkgdbigfudd7dfctfbugvnh
i know for sure the water one is correct with
A. Water is important to some organisms.
I'm 50/50 about the circulatory one BUT
A. carrying heat around the body.
that is your best bet
Ω₀ = the initial angular velocity (from rest)
t = 0.9 s, time for a revolution
θ = 2π rad, the angular distance traveled
Let
α = the angular acceleration
ω = the final angular velocity
The angular rotation obeys the equation
(1/2)*(α rad/s²)*(0.9 s)² = (2π rad)
α = 15.514 rad/s²
The final angular velocity is
ω = (15.514 rad/s²)*(0.9 s) = 13.963 rad/s
If the thrower's arm is r meters long, the tangential velocity of release will be
v = 13.963r m/s
Answer: 13.963 rad/s
Answer:

Explanation:
The electrostatic potential energy for pair of charge is given by
U=1/4π∈₀×(q₁q₂/r)
Hence for a system of three charges the electrostatic potential energy can be found by adding up the potential energy for all possible pairs or charges.For three equal charges on the corners of an equilateral triangle,the electrostatic potential energy is given by:
U=1/4π∈₀×(q²/r)+1/4π∈₀×(q²/r)+1/4π∈₀×(q²/r)
U=3×1/4π∈₀×(q²/r)
Substitute given values
So
<h2>
Answer: x=125m, y=48.308m</h2>
Explanation:
This situation is a good example of the projectile motion or parabolic motion, in which we have two components: x-component and y-component. Being their main equations to find the position as follows:
x-component:
(1)
Where:
is the projectile's initial speed
is the angle
is the time since the projectile is launched until it strikes the target
is the final horizontal position of the projectile (the value we want to find)
y-component:
(2)
Where:
is the initial height of the projectile (we are told it was launched at ground level)
is the final height of the projectile (the value we want to find)
is the acceleration due gravity
Having this clear, let's begin with x (1):
(3)
(4) This is the horizontal final position of the projectile
For y (2):
(5)
(6) This is the vertical final position of the projectile