The acceleration of the box as it slides down the ramp is 4.9 m/s².
<h3>
What is the acceleration of the box down the incline?</h3>
The acceleration of the box down the incline is determined by applying Newton's second law of motion as shown below;
F - Ff = ma
where;
- F is the parallel force on the box
- Ff is the frictional force on box = 0
- m is the mass of the box
- a is the acceleration of the box
F - 0 = ma
F = ma
mg sinθ = ma
g sinθ = a
where;
- g is acceleration due to gravity
- θ is the angle of inclination of the incline
a = 9.8 x sin(30)
a = 4.9 m/s²
Learn more about acceleration here: brainly.com/question/14344386
#SPJ1
Answer:
X = 2146.05 m
Explanation:
We need to understand first what is the value we need to calculate here. In this case, we want to know how far from the starting point the package should be released. This is the distance.
We also know that the plane is flying a certain height with an specific speed. And the distance we need to calculate is the distance in X with the following expression:
X = Vt (1)
However we do not know the time that this distance is covered. This time can be determined because we know the height of the plain. This time is referred to the time of flight. And the time of flight can be calculated with the following expression:
t = √2h/g (2)
Where g is gravity acceleration which is 9.8 m/s². Replacing the data into the expression we have:
t = √(2*2500)/9.8
t = 22.59 s
Now replacing into (1) we have:
X = 95 * 22.59
<h2>
X = 2146.05 m</h2>
This is the distance where the package should be released.
Hope this helps
We have to covert 512 cal of heat in kilo joules.
As, 1 cal = 0.004184 kJ = 4.184 joules.
Therefore,

Thus, combustion of a small wooden match produces approximately ( in kilo joules ) is 2.142 kJ .
Force between two charges is given by



Now in order to find the acceleration of each mass
we can use
F = ma

Answer:

Explanation:
The total energy of the satellite when it is still in orbit is given by the formula

where
G is the gravitational constant
m = 525 kg is the mass of the satellite
is the Earth's mass
r is the distance of the satellite from the Earth's center, so it is the sum of the Earth's radius and the altitude of the satellite:

So the initial total energy is

When the satellite hits the ground, it is now on Earth's surface, so

so its gravitational potential energy is

And since it hits the ground with speed

it also has kinetic energy:

So the total energy when the satellite hits the ground is

So the energy transformed into internal energy due to air friction is the difference between the total initial energy and the total final energy of the satellite:
