The motion of a falling whirligig is different to that of a falling paper ball due to spinning.
<h3>Type of motion performed by whirligig and falling paper ball </h3>
The motion of a falling whirligig is different from the motion of a falling paper ball because the paper ball falls on the ground without spinning while on the other hand, the whirligig falls on the ground along with spinning.
The falling whirligig performs two motion i.e. one is falling on the ground and the other is spinning during motion whereas paper ball performs one motion i.e. motion in the air towards the ground so we can conclude that the motion of a falling whirligig is different than of a falling paper ball.
Learn more about motion here: brainly.com/question/453639
Answer:
The frequency of the oscillation is 2.45 Hz.
Explanation:
Given;
mass of the spring, m = 0.5 kg
total mechanical energy of the spring, E = 12 J
Determine the spring constant, k as follows;
E = ¹/₂kA²
kA² = 2E
k = (2E) / (A²)
k = (2 x 12) / (0.45²)
k = 118.519 N/m
Determine the angular frequency, ω;

Determine the frequency of the oscillation;
ω = 2πf
f = (ω) / (2π)
f = (15.396) / (2π)
f = 2.45 Hz
Therefore, the frequency of the oscillation is 2.45 Hz.
Answer:
0.166 rad/s
Explanation:
See attachment for calculations
Nope, color change can also occur during a physical change.
For the electric field is measured for points at distances r,Electric field is mathematically given as
E=19.9*10^{-5}c/m^3
<h3>What is the
Electric field?</h3>
Generally, the equation for the electric field uniform charged is mathematically given as

Therefore
E=lr/3E0=3Ee0/r
Therefore
E=3*6*10^4*8.85*10^{-12}
E=19.9*10^{-5}c/m^3
In conclusion, E=19.9*10^{-5}c/m^3
E=19.9*10^{-5}c/m^3
Read more about Electric field
brainly.com/question/9383604
CQ
Complete question attached below