You have to decrease the length of the pendulum by 4 times in order to make the clock go 2 times faster
Answer:
W = 166422.729 N
Explanation:
given,
diameter of the balloon = 30 m
density of the air = 1.10 Kg/m³
weight of the balloon and cargo = ?
density of the surrounding air = 1.20 kg/m³
we know,
Density = mass/volume
m = density x volume


m = 16964.6 Kg
Weight of the balloon
W = m g
W = 16964.6 x 9.81
W = 166422.729 N
Weight of the balloon and the cargo is equal to W = 166422.729 N
Answer:
10880N
Explanation:
We are given that
Mass of elevator, m=850 kg
Acceleration, 

We have to find the tension in the cable.
We know that
When elevator is accelerating upward then tension in the cable

Using the formula


Answer:
3.33 Joules Per Second
Explanation:
Before finding the Power, we need to calculate the Work Done. The Work Done can be calculated using the formula:
WD = F × d
where F is the Magnitude of Force in <em>N</em>
<em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em>d is the Parallel Distance moved by the object in <em>m</em><em>.</em>
Hence, by Applying this formula, we get:
WD = (5)(20)
= 100 J
From here calculating Power is simple as it is the Rate of Work Done. Hence,
Power = 100/30
= <u>3</u><u>.</u><u>3</u><u>3</u><u> </u><u>J</u><u>/</u><u>s</u>
Therefore, the power put out is <u>3</u><u>.</u><u>3</u><u>3</u><u> </u><u>J</u><u>o</u><u>u</u><u>l</u><u>e</u><u>s</u><u> </u><u>p</u><u>e</u><u>r</u><u> </u><u>S</u><u>e</u><u>c</u><u>o</u><u>n</u><u>d</u><u>.</u>
C. Newton’s Third Law of Motion.
Because...
Newtons third law implies conversation of momentum it can also be seen as following from the second law: when one object pushes a second object at some point of contact using an applied force, there must be an equation of opposite force from the second object that cancels the applied force. Otherwise, there would be a nonzero net force on a massless point which, by the second law, would accelerate the point of contact by an infinite amount.