To solve this problem we will apply the principles of energy conservation. On the one hand we have that the work done by the non-conservative force is equivalent to -30J while the work done by the conservative force is 50J.
This leads to the direct conclusion that the resulting energy is 20J.
The conservative force is linked to the movement caused by the sum of the two energies, therefore there is an increase in kinetic energy. The decrease in the mechanical energy of the system is directly due to the loss given by the non-conservative force, therefore there is a decrease in mechanical energy.
Therefore the correct answer is A. Kintetic energy increases and mechanical energy decreases.
The correct answer for this question is this one: "C. Neither Natalie nor Will." Natalie and Will are discussing socialization. Natalie says that socialization occurs when an animal becomes accustomed to the people in the household. <span>Will says that socialization is easily attained if the animal is first exposed to humans after 12 weeks of age.</span>
Greetings!
The correct answer choice is Choice 4.
<em>Why?</em>
In a scientific experiment the only thing being changed is the independent variable. Everything else should stay the same.
In this experiment, the independent variable is the amount of sunlight each plant should receive. <em>Here's a tip</em>- when looking for and independent variable look for whats being changed on purpose.
Hope this helps!
~Fluerie
The distance between two basket ball sized aluminium balls is 9714 m.
Explanation:
Coulomb's law, or Coulomb's inverse-square law, is an experimental law of physics that quantifies the amount of force between two stationary, electrically charged particles. The electric force between charged bodies at rest is conventionally called electrostatic force or Coulomb force .
Coulomb's law formula => F = (k * Qb1 * Qb2)/r²
Given data :-
charge on ball 1 Qb1 = 6C
charge on ball 2 Qb2 = 14C
Force exerted F = 8000 N
k = 8.988 x 10^9 Nm²C−²(coulomb's constant).
substituting given values in the coulomb's formula
8000 = (( 8.988 x 10^9)*6*14)/r²
shifting r and 8000 to other sides
r² = (756 * 10^9)/8000
r = 9714 m.
Therefore the distance between two balls is r = 9714 m.
Do 112m /29s which it will be 3.862 which if you round it, it will be 3.86 m/s