1. Ca → Element
2. Proton → positive
3. H2O → compound
4. Fission → nuclear decay
5. Fusion → Nuclear synthesis
6. η → Neutron
7. e → electron
8. Atomic number → no of protons in nucleus.
Explanation
1. Ca (Calcium):
Calcium is an element with the atomic number of 20. It is an alkaline earth metal. The 99% of calcium is found in our bodies, in bones, teeth.
2. Proton:
Proton is a subatomic particle and it holds the positive charge. Proton is present in the nucleus of the atom.
3. H2O (water):
Water is a chemical compound and it's chemical formula is H2O. It's called compound as it contains 2 hydrogen and 1 oxygen atoms bonded together through the covalent bond.
4. Fission:
Fission is a process in which large massive unstable nucleus splits into the smaller, less heavier and stable nuclei. The energy is re;eased in the form of radiations during this process. It's called as the radioactive decay.
5. Fusion:
Fusion is opposite of the fission reaction. As in this case the two nuclei combines to form a single large nucleus. That's why it is a nuclear synthesis process.
6. η neutron:
Neutron is a subatomic particle and it is a neutral particle which is located inside the nucleus. n is a symbol used for the neutron.
7. e Electron:
The symbol for electron is e. It's a subatomic particle with negative charge. It is found in the orbits around the nucleus.
8. Atomic Number:
Atomic number is defined as the number of protons in the nucleus of an atom. IT is represented by Z.
Are you asking about independent and dependent variables?
I would choose the option B.
F = ma
a = 75 / 25 = 3 m/s^2
Answer:
1. a
2. a [im iffy on this but 95% positive its this]
3. b [walking is a form of aerobics, so i would say b]
Explanation:
Answer:
The maximum amount of work is
Explanation:
From the question we are told that
The temperature of the environment is 
The volume of container A is 
Initially the number of moles is 
The volume of container B is 
At equilibrium of the gas the maximum work that can be done on the turbine is mathematically represented as
Now from the Ideal gas law

So substituting for
in the equation above
![W = nRT ln [\frac{V_B}{V_A} ]](https://tex.z-dn.net/?f=W%20%3D%20%20nRT%20ln%20%5B%5Cfrac%7BV_B%7D%7BV_A%7D%20%5D)
Where R is the gas constant with a values of 
Substituting values we have that