Answer:
they provide structure and support, facilitate growth through mitosis, allow passive and active transport, produce energy, create metabolic reactions and aid in reproduction.
Explanation:
they provide six main functions.
Blood pressure is greater in feet because of gravity
Answer:
-320 μJ.
Explanation:
Consider a point with an electrical charge of
. Assume that
is the electrical potential at the position of that charge. The electrical potential of that point charge will be equal to:
.
Keep in mind that since both
and
might not be positive, the size of the electrical potential energy might not be positive, either.
For this point charge,
; (that's -8.0 microjoules, which equals to
)
.
Hence its electrical potential energy:
.
Why is this value negative? The electrical potential energy of a charge is equal to the work needed to bring that charge from infinitely far away all the way to its current position. Also, negative charges are attracted towards regions of high electrical potential. Bringing this
negative charge to the origin will not require any external work. Instead, this process will release 320 μJ of energy. As a result, the electrical potential energy is a negative value.
Answer:
a. 
b. 
c. 
Explanation:
First, look at the picture to understand the problem before to solve it.
a. d1 = 1.1 mm
Here, the point is located inside the cilinder, just between the wire and the inner layer of the conductor. Therefore, we only consider the wire's current to calculate the magnetic field as follows:
To solve the equations we have to convert all units to those of the international system. (mm→m)

μ0 is the constant of proportionality
μ0=4πX10^-7 N*s2/c^2
b. d2=3.6 mm
Here, the point is located in the surface of the cilinder. Therefore, we have to consider the current density of the conductor to calculate the magnetic field as follows:
J: current density
c: outer radius
b: inner radius
The cilinder's current is negative, as it goes on opposite direction than the wire's current.




c. d3=7.4 mm
Here, the point is located out of the cilinder. Therefore, we have to consider both, the conductor's current and the wire's current as follows:

As we see, the magnitud of the magnetic field is greater inside the conductor, because of the density of current and the material's nature.
<span>Answer:
Using 1/f = 1/d' + 1/d ...(where d' object distance and d is image distance)
1/4 = 1/7 + 1/d
1/4 - 1/7 = 1/d
3/28 = 1/d
d = 28/3
d = 9.33 cm</span>