Answer:
600 and 1500 [ohm
Explanation:
To solve this problem we must use ohm's law, which tells us that the voltage is the product of the current by the resistance, so we have:
V = I*R
where:
V = voltage [V]
I = current [amp]
R = resistance [ohm]
<u>Therefore:</u>
R = V/I
R1 = 60/(40*10^-3) = 1500 [ohm]
R2 = 60/(100*10^-3) = 600 [ohm]
So the resistance should be among 600 and 1500 [ohm]
The answer is 1.52.
N = C (speed of light) / actual speed
n = index of refraction
Wood because it is natural and we use it for furniture but we also burn it for energy.
Answer:
d.20760 J
Explanation:
We are given that
Mass of cart=m=100 kg
At the top,h=22 m
Amount of energy convert into heat due to friction=E=800 J
We have to find the kinetic energy at the bottom of the ramp.
Potential energy drop=mgh=![100\times 9.8\times 22=21560 J](https://tex.z-dn.net/?f=100%5Ctimes%209.8%5Ctimes%2022%3D21560%20J)
Kinetic energy at the bottom=Potential energy drop-energy lost due to friction
Kinetic energy at the bottom =(21560-800) J
Kinetic energy at the bottom=20760 J
Hence, the kinetic energy at the bottom of the ramp=20760 J
d.20760 J
Answer:
120000 kgxm/s
Explanation:
momentum is mass times velocity so just multiply 1600 kg times 75 m/s and you get 120000 kgxm/s