Answer:
The unknown solution had the higher concentration.
Explanation:
When two solutions are separated by a semi-permeable membrane, depending on the concentration gradient between the two solutions, there is a tendency for water molecules to move across the semi-permeable in order to establish an equilibrium concentration between the two solutions. This movement of water molecules across a semi-permeable membrane in response to a concentration gradient is known as osmosis. In osmosis, water molecules moves from a region of lower solute concentration or higher water molecules concentration to a region of higher solute concentration or lower water molecules concentration until equilibrium concentration is attained.
Based on the observation that when the glucose solution described in part A is connected to an unknown solution via a semipermeable membrane, the unknown solution level rises, it means that water molecules have passed from the glucose solution through the semipermeable membrane into the unknown solution. Therefore, the solution has a higher solute concentration than the glucose solution.
Answer:
c is not a true statement
Answer: The beaker in which water level has decreased more is the one that contains pure water.
Explanation: Even when water is not heated it can evaporate, that is because molecules move at different speed and those that are closer to surface can break the gass pressure and scape as water vapor.
The movement of molecules of water can be affected by the presence of solutes (salts or other soluble compounds) and increase the evaporation temperature. For this particular case, molecules of salt atract the water molecules (remember salt has ions and water is a dipole with partial charges) and do not let the water move freely which avoid them to scape to the surface.
Answer:
a) 
b) 
c) 
Carbon: 
Explanation:
<u>Nitrate</u>
First of all, is important to know that:

a) 10 ppm of nitrate (
) is equal to 
b) The molecular weight of nitrate is 


c) Nitrate has 14 mg of N per 62 mg of NO3

<u>Carbon</u>
Carbonate has 12 mg of C per 60 mg of 
Bicarbonate has 12 mg of C per 61 mg of 

