Suppose a tank is made of glass and has the shape of a right-circular cylinder of radius 1 ft. Assume that h(0) = 2 ft corresponds to water filled to the top of the tank, a hole in the bottom is circular with radius in., g = 32 ft/s2, and c = 0.6. Use the differential equation in Problem 12 to find the height h(t) of the water.
Answer:
Height of the water = √(128)/147456 ft
Explanation:
Given
Radius, r = 1 ft
Height, h = 2 ft
Radius of hole = 1/32in
Acceleration of gravity, g = 32ft/s²
c = 0.6
Area of the hold = πr²
A = π(1/32)² ---- Convert to feet
A = π(1/32 * 1/12)²
A = π/147456 ft²
Area of water = πr²
A = π 1²
A = π
The differential equation is;
dh/dt = -A1/A2 √2gh where A1 = Area of the hole and A2 = Area of water
A1 = π/147456, A2 = π
dh/dt = (π/147456)/π √(2*32*2)
dh/dt = 1/147456 * √128
dh/dt = √128/147456 ft
Height of the water = √(128)/147456 ft
Answer:
The answer which is a calculation can be found as an attached document
Explanation:
Answer:
Option D
A mineral’s color reflects the wavelengths of light that are absorbed by the mineral.
Explanation:
Color is one of the physical properties of minerals. Many minerals have a wide range of colors but there are some minerals with one consistent color and such minerals are referred as monochromatic minerals for example azurite. Normally, the streak color tends to be less variable than the color of the whole mineral and impurities or minor chemical components in a mineral react and often control the display color of resultant mineral. Option D is incorrect since mineral's color don't reflect wavelengths of light absorbed by such minerals.