Answer:
The specific heat of the alloy 
Explanation:
Mass of an alloy
= 25 gm
Initial temperature
= 100°c = 373 K
Mass of water
= 90 gm
Initial temperature of water
= 25.32 °c = 298.32 K
Final temperature
= 27.18 °c = 300.18 K
From energy balance equation
Heat lost by alloy = Heat gain by water
[
-
] =
(
-
)
25 ×
× ( 373 - 300.18 ) = 90 × 4.2 (300.18 - 298.32)

This is the specific heat of the alloy.
Explanation:
It is known that formula for area of a sphere is as follows.
A = 
= 
= 3.14 
= (27 + 273.15) K = 300.15 K
T = (77 + 273.15) K = 350.15 K
Formula to calculate the net charge is as follows.
Q = 
where, e = emissivity = 0.85
s = stefan-boltzmann constant = 
A = surface area
Hence, putting the given values into the above formula as follows.
Q = 
= 
= 1046.63 W
Therefore, we can conclude that the net flow of energy transferred to the environment in 1 second is 1046.63 W.
Answer:
Explanation: As with any substance, oxygen takes up much less space as a liquid than it does as a gas, so engineers can fit more oxygen into the same tank.