Answer:Electromagnetic Energy Example One
activity: cellphones
type of electromagnetic: radio waves
description: we all use our phones to make phone calls and to send a text!
Electromagnetic Energy Example two
activity: microwave
type of electromagnetic: microwave radiation
description: The microwave radiation is absorbed by water molecules in the food which converts to heat intern heats the food do to high levels of radiation being emitted into the food!
Explanation:
i hope this helps you sorry if it doesn't
In this case, the movement is uniformly delayed (the final
rapidity is less than the initial rapidity), therefore, the value of the
acceleration will be negative.
1. The following equation is used:
a = (Vf-Vo)/ t
a: acceleration (m/s2)
Vf: final rapidity (m/s)
Vo: initial rapidity (m/s)
t: time (s)
2. Substituting the values in the equation:
a = (5 m/s- 27 m/s)/6.87 s
3. The car's acceleration is:
a= -3.20 m/ s<span>^2</span>
We have Four (4). quantum number used in description of the energy state of an electron.
Answer:
simple machines such as ramps lessen the moment required to do work. if a triangle has a base of 5 and the height is 7, a ramp would make the hypotenuse of this triangle lessoning the total distance. using a²+b²=c² 25+49=c² 74≈8.6 and it is obvious that 8.6 is less than 12 in every unit. other simple machines such as pulleys make it lighter making it simply easier for an object to be lifted.
Explanation:
NOTE: The given question is incomplete.
<u>The complete question is given below.</u>
A student measures the speed of yellow light in water to be 2.00 x 10⁸ m/s. Calculate the speed of light in air.
Solution:
Speed of yellow light in water (v) = 2.00 x 10⁸ m/s
Refractive Index of water with respect to air (μ) = 4/3
Refractive Index = Speed of yellow light in air / Speed of yellow light in water
Or, The speed of yellow light in air = Refractive Index × Speed of yellow light in water
or, = (4/3) × 2.00 x 10⁸ m/s
or, = 2.67 × 10⁸ m/s ≈ 3.0 × 10⁸ m/s
Hence, the required speed of yellow light in the air will be 3.0 × 10⁸ m/s.