B, because
3/15=x/75
75/15=5
3*5=15
15 is your answer.
Answer:
scale factor= 4.7
Step-by-step explanation:
47/10= 4.7
32.9/7= 4.7
28.2/6= 4.7
To figure out the scale factor for the smallest to the largest triangle, divide the larger number by the smaller number (of the same side).
If you wanted to get the scale factor of the largest to smallest triangle, you would just do the opposite.
ex. 10/47, 7/32.9...
Answer:
90°
Step-by-step explanation:
right angle - 90°
.....
Answer:
Increasing if f' >0 and decreasing if f'<0
Step-by-step explanation:
Difference quotient got by getting
will be greater than 0 if function is increasing otherwise negative
Here h is a small positive value.
In other words, we find that whenever first derivative of a function f(x) is positive the function is increasing.
Here given that for x1, x2 where x1<x2, we have
if f(x1) <f(x2) then the function is decreasing.
Or if x1<x2 and if f(x1) >f(x2) for all x1, and x2 in I the open interval we say f(x) is decreasing in I.
Answer:
![\left[\begin{array}{cc}6&-3\\10&-1\end{array}\right]+\left[\begin{array}{cc}-2&8\\3&-12\end{array}\right]=\left[\begin{array}{cc}4&5\\13&-13\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D6%26-3%5C%5C10%26-1%5Cend%7Barray%7D%5Cright%5D%2B%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D-2%268%5C%5C3%26-12%5Cend%7Barray%7D%5Cright%5D%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D4%265%5C%5C13%26-13%5Cend%7Barray%7D%5Cright%5D)
Step-by-step explanation:
If you have two matrices:
![A=\left[\begin{array}{cc}a&b\\c&d\end{array}\right]\\and\\B=\left[\begin{array}{cc}e&f\\g&h\end{array}\right]\\\\\\A+B=\left[\begin{array}{cc}a+e&b+f\\c+g&d+h\end{array}\right]](https://tex.z-dn.net/?f=A%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7Da%26b%5C%5Cc%26d%5Cend%7Barray%7D%5Cright%5D%5C%5Cand%5C%5CB%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7De%26f%5C%5Cg%26h%5Cend%7Barray%7D%5Cright%5D%5C%5C%5C%5C%5C%5CA%2BB%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7Da%2Be%26b%2Bf%5C%5Cc%2Bg%26d%2Bh%5Cend%7Barray%7D%5Cright%5D)
We have:
![A=\left[\begin{array}{cc}6&-3\\10&-1\end{array}\right]\\and\\B=\left[\begin{array}{cc}-2&8\\3&-12\end{array}\right]](https://tex.z-dn.net/?f=A%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D6%26-3%5C%5C10%26-1%5Cend%7Barray%7D%5Cright%5D%5C%5Cand%5C%5CB%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D-2%268%5C%5C3%26-12%5Cend%7Barray%7D%5Cright%5D)
And we need to express as a single matrix:
![A+B=\left[\begin{array}{cc}6&-3\\10&-1\end{array}\right]+\left[\begin{array}{cc}-2&8\\3&-12\end{array}\right]\\\\\\A+B=\left[\begin{array}{cc}6+(-2)&-3+8\\10+3&-1+(-12)\end{array}\right]\\\\\\A+B=\left[\begin{array}{cc}6-2&5\\13&-1-12\end{array}\right]\\\\\\A+B=\left[\begin{array}{cc}4&5\\13&-13\end{array}\right]](https://tex.z-dn.net/?f=A%2BB%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D6%26-3%5C%5C10%26-1%5Cend%7Barray%7D%5Cright%5D%2B%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D-2%268%5C%5C3%26-12%5Cend%7Barray%7D%5Cright%5D%5C%5C%5C%5C%5C%5CA%2BB%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D6%2B%28-2%29%26-3%2B8%5C%5C10%2B3%26-1%2B%28-12%29%5Cend%7Barray%7D%5Cright%5D%5C%5C%5C%5C%5C%5CA%2BB%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D6-2%265%5C%5C13%26-1-12%5Cend%7Barray%7D%5Cright%5D%5C%5C%5C%5C%5C%5CA%2BB%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D4%265%5C%5C13%26-13%5Cend%7Barray%7D%5Cright%5D)
The answer is:
![\left[\begin{array}{cc}6&-3\\10&-1\end{array}\right]+\left[\begin{array}{cc}-2&8\\3&-12\end{array}\right]=\left[\begin{array}{cc}4&5\\13&-13\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D6%26-3%5C%5C10%26-1%5Cend%7Barray%7D%5Cright%5D%2B%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D-2%268%5C%5C3%26-12%5Cend%7Barray%7D%5Cright%5D%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D4%265%5C%5C13%26-13%5Cend%7Barray%7D%5Cright%5D)
It is expressed as a single matrix.