Assume that the small-massed particle is
and the heavier mass particle is
.
Now, by momentum conservation and energy conservation:


Now, there are 2 solutions but, one of them is useless to this question's main point so I excluded that point. Ask me in the comments if you want the excluded solution too.

So now, we see that
and
. So therefore, the smaller mass recoils out.
Hope this helps you!
Bye!
Answer:
x-component of force is 38.18 lb where as magnitude of Force is 93.16
Explanation:
Fy of the force F exerted on the handle of the box wrench = 86 lb
Considering the triangle in Fig 1
magnitude of perpendicular = P = 12
magnitude of base = B = 5
using Pythagoras theorem



y-component of force is given given as:

Answer:
Explanation:
Given
volume 
Suppose base is square with side L
height of crate is h
Volume 

Cost of top and bottom area 
Cost of Side area 
Total Cost 
Total Cost 
Differentiate C w.r.t Length




Dimensions are
<span>10 inches
You are at risk of serious injury if you sit less than 10 inches away from the steering wheel, because of the speed and force the airbag deploys at. This is also part of the reason why driving instructors now instruct you to hold the steering wheel from the lower parts, rather than the top, which can cause your thumbs to break if the air bag deploys.</span>
Answer:
13 m/s^2
Explanation:
The acceleration of gravity near the surface of a planet is:
g = MG / R^2
For planet 1, g = 26 m/s^2.
The gravity on planet 2 in terms of the mass and radius of planet 1 is:
g = (2M)G / (2R^2)
g = 1/2 MG / R^2
Since MG/R^2 = 26 m/s^2, then:
g = 13 m/s^2