The substance has melted
ex: ice+heat= water
Answer:
t = 0.85[s]
Explanation:
To solve this problem we must make a complete description of this. By doing an internet search, we find the description of this problem as if of the question.
<u>Description</u>
<u />
"An alligator swims to the left with a constant velocity of 5 m s when the alligator season a bird straight ahead the alligator speeds up with a constant acceleration of 3 m/s^2 leftward until it reaches a final velocity of 35 Ms left work how many seconds does it take the alligator to speed up from 5 m/s to 35 m/s".
To solve this problem we must identify the initial data:
v0 = initial velocity = 5 [m/s]
a = acceleration = 3 [m/s^2]
vf = final velocity = 35[m/s]
t = time = ?
Using the following kinematic equation, we can find the time that is required.
![v_{f}=v_{0}+a*t\\35=5+35*t\\t=\frac{35-5}{35} \\t=0.85[s]](https://tex.z-dn.net/?f=v_%7Bf%7D%3Dv_%7B0%7D%2Ba%2At%5C%5C35%3D5%2B35%2At%5C%5Ct%3D%5Cfrac%7B35-5%7D%7B35%7D%20%5C%5Ct%3D0.85%5Bs%5D)
Answer:
Predictive
Explanation:
There is a wide variety of life cycles applicable to project management. In this regard, we currently have as a reference two somewhat extreme approaches that mark two very different ways of dealing with projects. The predictive approach and the agile approach.
A predictive approach involves a great effort in initial planning and re-planning every time changes are accepted in the project. Therefore, this approach is recommended for changing but not highly changing environments. Although this approach is applicable to any type of project, clear examples of application would be the construction of a subway line, a bridge, the development of critical software. That is, projects where correct and detailed planting is key.
Answer:
a. False
Explanation:
For an object to be moving at a constant velocity, a net force of 0 N would be required.
Newton's 1st Law of Motion states that an object will remain at rest unless acted upon by an unbalanced force, and an object will remain in motion unless acted upon by an unbalanced force.
Therefore, the unbalanced force of 6 N would not allow the rock to maintain its constant speed.
The answer to this question is A) False.
When you are talking about the Principle of mechanical Energy Conservation, it is really only including the kinetic and potential energy in a total system. When frictional forces are present, although the conservation of energy law is still present, it does not work when it comes to the conservation of mechanical energy as there is another type of energy that is factored in. As friction acts on the object, that transition from potential to kinetic as it slide/falls will be completely different as some of that energy is being transformed into thermal energy. Which breaks the conservation of mechanical energy.