An electron should emit energy to return to its original energy level from a higher energy level.
<h3>What is an energy level?</h3>
Energy levels (also called electron shells) are fixed distances from the nucleus of an atom where electrons may be found.
The electron absorbs the energy and jumps to a higher energy level. In the reverse process, emission, the electron returns to the ground state by releasing the extra energy that is absorbed.
Hence, an electron should emit energy to return to its original energy level from a higher energy level.
Learn more about the energy level here:
brainly.com/question/17396431
#SPJ1
The given elements put into an equation using their symbols are as follows:
Pb +

=

+ Ag
Since there are 2 Pb on the right side of the equation, you would change the coefficient of Pb on the left side to 2:
2Pb +

=

+ Ag
Since there are 2 Acetate on the right side of the equation, you would change the coefficient of Silver Acetate on the left side to 2:
2Pb +

=

+ Ag
Now there are 2 Silver on the left side, so you change the coefficient of Silver on the right side to 2:
2Pb +

=

+ 2Ag
That is your final equation
The coefficients are 2 + 2 = 1 + 2
Answer:
negative, positive, increase
Explanation:
From the given question,
During the formation of bond, between two atoms with difference between their electronegativity-
- The more electronegative atom, will pull the electrons towards itself , and hence acquires a partial negative charge,
And,
- The less electronegative atom, will acquire a partial positive charge.
- The more the difference between the electronegativity of the atoms, the more would be the magnitude of partial charge.
- And, the less would be the difference between the electronegativity of the atoms, the lesser would be the magnitude of partial charge.
Because things that are burnt have been changed into something else like moldy bread thats cooked.
It is chemical change because you cannot unburn something.
Answer:
There are 3 steps of this problem.
Explanation:
Step 1.
Wet steam at 1100 kPa expands at constant enthalpy to 101.33 kPa, where its temperature is 105°C.
Step 2.
Enthalpy of saturated liquid Haq = 781.124 J/g
Enthalpy of saturated vapour Hvap = 2779.7 J/g
Enthalpy of steam at 101.33 kPa and 105°C is H2= 2686.1 J/g
Step 3.
In constant enthalpy process, H1=H2 which means inlet enthalpy is equal to outlet enthalpy
So, H1=H2
H2= (1-x)Haq+XHvap.........1
Putting the values in 1
2686.1(J/g) = {(1-x)x 781.124(J/g)} + {X x 2779.7 (J/g)}
= 781.124 (J/g) - x781.124 (J/g) = x2779.7 (J/g)
1904.976 (J/g) = x1998.576 (J/g)
x = 1904.976 (J/g)/1998.576 (J/g)
x = 0.953
So, the quality of the wet steam is 0.953