Answer:
See figure 1
Explanation:
On this case we have a <u>base</u> (methylamine) and an <u>acid</u> (2-methyl propanoic acid). When we have an acid and a base an <u>acid-base reaction </u>will take place, on this specific case we will produce an <u>ammonium carboxylate salt.</u>
Now the question is: <u>¿These compounds can react by a nucleophile acyl substitution reaction?</u> in other words <u>¿These compounds can produce an amide? </u>
Due to the nature of the compounds (base and acid), <u>the nucleophile</u> (methylamine) <u>doesn't have the ability to attack the carbon</u> of the carbonyl group due to his basicity. The methylamine will react with the acid-<u>producing a positive charge</u> on the nitrogen and with this charge, the methylamine <u>loses all his nucleophilicity.</u>
I hope it helps!
Answer:
is the equation of state of a hypothetical ideal gas
Explanation:
its formula is PV=nRT
Answer: C. 25.6 kPa
Explanation:
The Gauge pressure is defined as the amount of pressure in a fluid that exceeds the amount of pressure in the atmosphere.
As such, the formula will be,
PG = PT – PA
Where,
PG is Gauge Pressure
PT is Absolute Pressure
PA is Atmospheric Pressure
Inputted in the formula,
PG = 125.4 - 99.8
PG = 25.6 kPa
The gauge pressure inside the container is 25.6kPa which is option C.
Answer:
Assume that the sack was initially close to the sea level. Its weight will increase even though its mass stays the same.
Explanation:
The weight of an object typically refers to the size of the planet's gravitational attraction (a force) on this object. That's not the same as the mass of the object. The weight of an object at a position depends on the size of the gravitational field there; on the other hand, the mass of the object is supposed to be same regardless of the location- as long as the object stays intact.
Let
denote the strength of the gravitational field at a certain point. If the mass of an object is
, its weight at that point will be
.
Indeed,
on many places of the earth. However, this value is accurate only near the sea level. The equation for universal gravitation is a more general way for finding the strength of the gravitational field at an arbitrary height. Let
denote the constant of universal gravitation, and let
denote the mass of the earth. At a distance
from the center of the earth (where
.
The elevation of many places in Bhutan are significantly higher than that of many places in India. Therefore, a sack of potato in Bhutan will likely be further away from the center of the earth (larger
) compared to a sack of potato in India.
Note, that in the approximation, the value of
is (approximately, because the earth isn't perfectly spherical) inversely proportional to the distance from the center of the planet. The gravitational field strength
On the other hand, the weight of an object of fixed mass is proportional to the gravitational field strength. Therefore, the same bag of potatoes will have a smaller weight at most places in Bhutan compared to most places in India.
The idea here is that you need to figure out how many moles of magnesium chloride,
MgCl
2
, you need to have in the target solution, then use this value to determine what volume of the stock solution would contain this many moles.
As you know, molarity is defined as the number of moles of solute, which in your case is magnesium chloride, divided by liters of solution.
c
=
n
V
So, how many moles of magnesium chloride must be present in the target solution?
c
=
n
V
⇒
n
=
c
⋅
V
n
=
0.158 M
⋅
250.0
⋅
10
−
3
L
=
0.0395 moles MgCl
2
Now determine what volume of the target solution would contain this many moles of magnesium chloride
c
=
n
V
⇒
V
=
n
c
V
=
0.0395
moles
3.15
moles
L
=
0.01254 L
Rounded to three sig figs and expressed in mililiters, the volume will be
V
=
12.5 mL
So, to prepare your target solution, use a
12.5-mL
sample of the stock solution and add enough water to make the volume of the total solution equal to
250.0 mL
.
This is equivalent to diluting the
12.5-mL
sample of the stock solution by a dilution factor of
20
.