Answer:
45.0 L is the volume of gas will the balloon contain at 1.35 atm and 253 K.
Explanation:
Using Ideal gas equation for same mole of gas as
Given ,
V₁ = 25.0 L
V₂ = ?
P₁ = 2575 mm Hg
Also, P (atm) = P (mm Hg) / 760
P₁ = 2575 / 760 atm = 3.39 atm
P₂ = 1.35 atm
T₁ = 353 K
T₂ = 253 K
Using above equation as:

Solving for V₂ , we get:
<u>V₂ = 45.0 L</u>
45.0 L is the volume of gas will the balloon contain at 1.35 atm and 253 K.
Answer:
It becomes shorter
Explanation:
A wave, such as a Soundwave, controls volume based on it's Wavelength. A Louder sound has a shorter wavelength, a softer sound has it's waves spread out more. Amplitude is simply a fancy name for Volume in Amps. When amplitude increases, the volume increases. Thus, waves become shorter.
Answer: Ecell = -0.110volt
Explanation:
Zn--->Zn^+2 + 2e^-.........(1) oxidation
Cu^2+ 2e^- --->Cu........(2)reduction
Zn + Cu^2+ ----> Cu + Zn^+2 (overall
For an electrochemical cell, the reduction potential set up is given by
E(cell) = E(cathode) - E(anode)
E(cell) = E(oxidation) - E(reduction)
E(cathode) = E(oxidation)
E(anode) = E(reduction)
Given that
E(oxidation) = -0.763v
E(reduction) = +0.337v
E(cell) = -0.763 - (+0.337)
E(cell) = -0.763- 0.337
E(cell) = -0.110volt
Dipole-dipole interactions, and London dispersion interactions
The synthesis of a compound from its elements in their standard state, accompanied by a change in energy that is known as standard enthalpy of formation of a compound. The standard state of a substance is the most stable physical state of the compound that exist at STP that is at 1 atm, 273 K temperature. So the answer is yes, the energy change accompanying the synthesis of a compound from its elements in their standard state.