Answer:
0.375 L
Explanation:
We know that at neutralization, the number of mol of acid must equal the number of equivalents of base.
This is a reaction 1:1 acid to base:
HClO₄ + NaOH ⇒ NaClO₄ + H₂O
We re given the moles of the base indirectly since we know the volume and molarity. From there we can calculate the volume of HClO₄.
Moles NaOH = 0.115 L x 0.244 M = 0.115 L x 0.244 mol/L =0.028 mol
Thus we require 0.028 mol of HClO₄ in the pechloric acid solution:
Molarity = # moles / V ⇒ V = # moles / M
V = 0.028 mol / 0.0748 mol/L = 0.375 L
Note that this problem can be solved in just one step since
M(HClO₄) x V(HClO₄) = M(NaOH) x V(NaOH) ⇒
V(HClO₄) = M(NaOH) x V(NaOH) / M(HClO₄)
Answer:
These systems are defined both by the types of energy and matter they contain and by how that matter and energy move through and between systems. In natural systems, both energy and matter are conserved within a system. This means that energy and matter can change forms but cannot be created or destroyed.
Explanation:
<u>Answer</u>
So this is the reaction that happens.
<span>C4H10 + O2 = CO2 + H2O </span>
<span>Balanced, it is </span>
<span>2C4H10 + 8O2 = 8CO2 + 10H2O </span>
<span>Given 1 kg or 1000 g of butane, use stoichiometry aka factor labeling aka conversions and mole ratios to get to grams of oxygen. </span>
<span>I'll do an example. Let's form water. Hydrogen is diatomic too. </span>
<span>2H2 + O2 = 2H2O </span>
<span>Given 1000 g of Hydrogen, I need to know how many grams of oxygen to use. To convert grams to moles,
I know that 1 mol of H2 equals 2.02 g. Then, for every mole of O2, there are 2 moles of H2. Then converting moles of O2 to grams, I know that one mole of it equals 32 grams. </span>
<span>[1000 g H2] x [1 mol H2/2.02 g H2] x [1 mol O2/2 mol H2] x [32 g O2/1 mol O2] </span>
<span>My answer would be 7.9 kg </span>
A species with a positive charge will have a net attraction to a species with a negative charge. Among the choices, N3- is the only one attracted to a positive charge.