Answer:
You didn't give the information needed for the answer bud
Explanation:
For purposes of completing our calculations, we're going to assume that
the experiment takes place on or near the surface of the Earth.
The acceleration of gravity on Earth is about 9.8 m/s², directed toward the
center of the planet. That means that the downward speed of a falling object
increases by 9.8 m/s for every second that it falls.
3 seconds after being dropped, a stone is falling at (3 x 9.8) = 29.4 m/s.
That's the vertical component of its velocity. The horizontal component is
the same as it was at the instant of the drop, provided there is no horizontal
force on the stone during its fall.
1. If we increase the distance to twice it's original value, the light intensity is reduced by one-fourth, the light intensity would be:
I0/4
2. rms magnetic field is inversely proportional to distance, so the new rms magnetic field would be:
B0/2
3. average energy density is inversely proportional to the square of the distance, so the new average energy density is:
E0/4
Because a liquid can take the wheight of the hydraulic press while a gas could combust under pressure.