Answer:
132 N
Explanation:
Given that a 1.1 kg hammer strikes a nail. Before the impact, the hammer is moving at 4.5 m/s; after the impact it is moving at 1.5 m/s in the opposite direction. If the hammer is in contact with the nail for 0.025 s, what is the magnitude of the average force exerted by the hammer on the nail
From Newton 2nd law of motion,
Change in momentum = impulse.
Change in momentum = m( V - U )
Substitute all the parameters into the formula
Change in momentum = 1.1 ( 4.5 - 1.5 )
Change in momentum = 1.1 × 3
Change in momentum = 3.3 kgm/s
Impulse = Ft
That is,
Ft = 3.3
Substitute time t into the formula above
F × 0.025 = 3.3
F = 3.3 / 0.025
F = 132 N
Therefore, the magnitude of the average force exerted by the hammer on the nail is 132 N.
Answer:
35 m/s^2
Explanation:
Decceleration = change in velocity / change in time
= ( 70 m/s ) / 2 seconds = 35 m/s^2
DEcceleration = 35 m/s^2
Jason's speed changes by - 35 m/s^2
Answer:
Sound waves are longitudinal in nature.
Explanation:
There are many types of waves like transverse, longitudinal, electromagnetic wave etc.
Sound waves are longitudinal in nature. In longitudinal type of wave, the medium particles moves parallel to the propagation of the wave. This type of waves move in the form of compression and rarefaction.
In compression, the particle density at a point is very less while in rarefaction, the particle density at a point is very high.
So, the correct option is (b) "longitudinal wave".
A. static discharge <span>Static discharge is the sudden flow of electricity between two electrically charged objects caused by contact, an electrical short, or dielectric breakdown.</span>