Answer:
2.1 m/s
Explanation:
Momentum is conserved, so:
m₁ u₁ + m₂ u₂ = (m₁ + m₂) v
(9.1 kg) (6.6 m/s) = (9.1 kg + 19.3 kg) v
v = 2.1 m/s
Answer: 0.66 V
Explanation:
Given
Magnetic field, B = 0.963 T
Instantaneous rare = 74.5 cm/s = 0.745 m/s
radius, r = 14.7 cm = 0.147 m
We will use the formula
emf = dΦ/dt
emf = d(BA)/dt
emf = d(Bπr²)/dt
if B is constant, then we can say
emf = Bπ d(r²)/dt on differentiating, we have,
emf = Bπ (2r dr/dt)
emf = 2πrB dr/dt substituting each values, we have
emf = 2 * 3.142 * 0.147 * 0.963 * 0.745
emf = 0.66 V
Therefore, the induced emf in the loop at that instant is 0.66 V
Answer:
Explanation:Abiotic is the answer.