Answer:
Solids, liquids, and gases are made of tiny particles called atoms and molecules. In a solid, the particles are very attracted to each other. They are close together and vibrate in position but don't move past one another. In a liquid, the particles are attracted to each other but not as much as they are in a solid.
Answer:
Ethanol most easily forms hydrogen bonds.
Explanation:
The difference among the alcohols in this question is the size of carbonic chain and the position of the -OH group.
Ethanol has 2 carbons and the -OH group is terminal. The other alcohols have more carbons and the -OH group is not terminal. This means that the approximation of molecules will be facilitated for ethanol, and the interaction through hydrogen bons will be easier. However, for the other molecules, there will be steric hindrance, which will make it more difficult for the molecules to make hydrogen bonds.
The figure attached shows the alcohol structures.
Answer:
0.013%
Yes, it does. The answer agrees with the statement.
Explanation:
Both conformers are in equilibrium, and it can be represented by the equilibrium equation K:
K = [twist-boat]/[chair]
The free energy between them can be calculated by:
ΔG° = -RTlnK
Where R is the gas constant (8.314 J/mol.K), and T is the temperature (25°C + 273 = 298 K).
ΔG° = 5.3 kcal/mol * 4.182 kJ/kcal = 22.165 kJ/mol = 22165 J/mol
22165 = -8.314*298*lnK
-2477.572lnK = 22165
lnK = -8.946
K = 
K = 1.30x10⁻⁴
[twist-boat]/[chair] = 1.30x10⁻⁴
[twist-boat] = 1.30x10⁻⁴[chair]
The percentage of the twist-boat conformer is:
[twist-boat]/([twist-boat] + [chair]) * 100%
1.30x10⁻⁴[chair]/(1.30x10⁻⁴[chair] + [chair]) *100%
0.013%
The statement about the conformers is that the chair conformer is more stable, and because of that is more present. So, the answer agrees with it.