To solve the exercise it is necessary to apply the concepts related to Newton's Second Law, as well as the definition of Weight and Friction Force.
According to the problem there is a movement in the body and it is necessary to make a sum of forces on it, so that

There are two forces acting on the body, the Force that is pushing and the opposing force that is that of friction, that is

To find the required force then,

By definition we know that the friction force is equal to the multiplication between the friction coefficient and the weight, that is to say





Therefore the horizontal force applied on the block is B) 230N
I would think it would be the same if you are weighting the dish and the Ice cube at the same time anyway. Not to sure though I'm a beginner and math is complicated for me sometimes.
F = m • a
What we know:
- Gravity: 9.8 m/s
- Force: 490 N
Equation derived:
m = F/a
m = 490/9.8
= 50 kg
The number and units. An example would be 3cm or 4kg.
Answer:
The sum of the lengths of the sides is 2292 yards and the sum of the lengths of the triangle is 3056 yards
Explanation:
Since y represents the length of fence that is opposite (parallel) to the river and x represent the length of fence perpendicular to the river.
Therefore since we can use 3,056 yards of fencing
Side perpendicular to the river = x and,
Side opposite to the river = y = 3056 - 2x
The area of the rectangle formed (A) = Perpendicular side × Parallel side
∴ A = x(3056 - 2x) = 3056x - 2x²
A = 3056x - 2x²
To maximize the area, A' (dA/dx) = 0
∴ A' = 3056 - 4x = 0
3056 - 4x = 0
4x = 3056
x = 764 yards
y = 3056 - 2x = 3056 - 2(764) = 1528 yards.
Side perpendicular to the river = 764 yards and,
Side opposite to the river = 1528 yards
The sum of the lengths of the sides = 764 + 1528 = 2292 yard and the sum of the lengths of the triangle = 764 + 764 + 1528 = 3056 yards