Answer:
0.34148 m
Explanation:
= Resistivity of tungsten = 
d = Diameter = 0.0018 inch
r = Radius = 

= Temperature coefficient of tungsten = 
Power is given by

We have the equation
![R_2=R_1[1+\alpha(T_2-T_1)]\\\Rightarrow R_1=\dfrac{R_2}{1+\alpha(T_2-T_1)}\\\Rightarrow R_1=\dfrac{144}{1+0.0045(2550-25)}\\\Rightarrow R_1=11.64812\ \Omega](https://tex.z-dn.net/?f=R_2%3DR_1%5B1%2B%5Calpha%28T_2-T_1%29%5D%5C%5C%5CRightarrow%20R_1%3D%5Cdfrac%7BR_2%7D%7B1%2B%5Calpha%28T_2-T_1%29%7D%5C%5C%5CRightarrow%20R_1%3D%5Cdfrac%7B144%7D%7B1%2B0.0045%282550-25%29%7D%5C%5C%5CRightarrow%20R_1%3D11.64812%5C%20%5COmega)
Resistance is given by

The length of the filament is 0.34148 m
Large amounts of water do have a big impact on the weather: indeed, it takes less energy to warm/cool land than water.
Therefore, places near large amounts of water tend to have smaller differences in temperature between summer and winter than places far from waters.
Hence, during winter in Puerto Rico, alongside the coast, the temperature will be higher than in the innermost parts of the island.
<span>To find the gravitational potential energy of an object, we can use this equation:
GPE = mgh
m is the mass of the object in kg
g = 9.80 m/s^2
h is the height of the object in meters
GPE = mgh
GPE = (0.700 kg) (9.80 m/s^2) (1.5 m)
GPE = 10.3 J
The gravitational potential energy of this can is 10.3 J</span>
A spring that obeys Hooke's law has a spring force constant of 272 N/m. This spring is then stretched by 28.6 cm
-- Momentum is (mass) x (speed).
Object B has 1.5 times as much momentum as Object A has.
-- Kinetic energy is (1/2) x (mass) x (speed) .
Object B has 1.5 times as much kinetic energy as Object A has.
-- If they would both stop long enough to get on the scale,
Object B would weigh 1.5 times as much as Object A does.