1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
s2008m [1.1K]
3 years ago
9

Why is soap solution a better cleansing agent than ordinary water?

Physics
1 answer:
Harrizon [31]3 years ago
8 0
Because it has ingredients in it that will get more Germs off your skin than ordinary water. So, use soap when you wash your hands. XD
You might be interested in
Could a car drive on a frictionless surface? Explain using the terms action
Julli [10]

Answer:

No, it cannot. The car needs the friction of the surface to drive because the car pushes the surface backwards, and the surfaces makes a reaction force pushing the car forward, and that works because of the friction. In a frictionless surface the tires would rotate in the same place

7 0
3 years ago
A train travels 55km, south along a straight track in 34minutes. What is the train Ls average velocity in kilometers per hour
Westkost [7]

Answer:

96.5 km/h

Explanation:

The average velocity of the train is given by:

v=\frac{d}{t}

where

d is the displacement

t is the time taken

For this train, we have:

d = 55 km south (displacement is a vector, so we must also consider the direction)

t= 34 min \cdot \frac{1}{60 min/h}=0.57 h

Substituting into the equation, we find the average velocity:

v=\frac{55 km}{0.57 h}=96.5 km/h

5 0
3 years ago
65mi/hr South is an example of​
Shtirlitz [24]

Answer:

It's an example of velocity.

8 0
3 years ago
Do you want robot referees in your favorite class?
jeka94

Answer:

Sounds cool.. but what do they do?

Explanation:

5 0
3 years ago
Read 2 more answers
Six artificial satellites complete one circular orbit around a space station in the same amount of time. Each satellite has mass
oee [108]

Answer:

The ranking of the net force acting on different satellite from largest to smallest is {F_E} > {F_F} > {F_A} = {F_B} = {F_D} > {F_C}

Explanation:

In order to get a good understanding of this solution we need to understand that the main concepts used to solve this problem are centripetal force and velocity of satellite.

Initially, use the expression of the velocity of satellite and find out its dependence on the radius of orbit. Use the dependency in the centripetal force expression.

Finally, we find out the velocity of the six satellites and use that expression to find out the force experienced by the satellite. Find out the force in terms of mass (m) and radius of orbit (L) and at last compare the values of force experienced by six satellites.

Fundamentals

The centripetal force is necessary for the satellite to remain in an orbit. The centripetal force is the force that is directed towards the center of the curvature of the curved path. When a body moves in a circular path then the centripetal force acts on the body.

The expression of the centripetal force experienced by the satellite is given as follows:

                    {F_{\rm{c}}} = \frac{{m{v^2}}}{L}

Here, m is the mass of satellite, v is the velocity, and L is the radius of orbit.

The velocity of the satellite with which the satellite is orbiting in circular path is given as follows:

                        v = \frac{{2\pi L}}{T}

Here, T is the time taken by the satellite.

The velocity of the satellite with which the satellite is orbiting in circular path is given as follows;

                    v = \frac{{2\pi L}}{T}

Since, all the satellites complete the circular orbit in the same amount of time. The factor of   \frac{{2\pi }}{T}   is not affected the velocity value for the six satellites. Therefore, we can write the expression of v given as follows:

Substitute  v = \frac{{2\pi L}}{T} in the force expression {F_{\rm{c}}} = \frac{{m{v^2}}}{L}   as follows:

                              \begin{array}{c}\\{F_c} = \frac{{m{{\left( {\frac{{2\pi L}}{T}} \right)}^2}}}{L}\\\\ = \frac{{4{\pi ^2}}}{{{T^2}}}mL\\\end{array}

Since, all the satellites complete the circular orbit in the same amount of time. The factor of \frac{{4{\pi ^2}}}{{{T^2}}}  not affect the force value for six satellites.Therefore, we can write the expression of {F_c}  given as follows:

        {F_c} = kmL

Here, k refers to constant value and equal to  \frac{{4{\pi ^2}}}{{{T^2}}}

    {F_A} = k{m_A}{L_A}

Substitute 200 kg for {m_A}   and 5000 m for LA in the expression                                  {F_A} = k{m_A}{L_A}

\begin{array}{c}\\{F_A} = k\left( {200{\rm{ kg}}} \right)\left( {5000{\rm{ m}}} \right)\\\\ = {10^6}k{\rm{ N}}\\\end{array}

The force acting on satellite B from their rocket is given as follows:{F_B} = k{m_B}{L_B}

Substitute 400 kg for {m_B} and 2500 m for in the expression {F_B} = k{m_B}{L_B}

\begin{array}{c}\\{F_B} = k\left( {400{\rm{ kg}}} \right)\left( {2500{\rm{ m}}} \right)\\\\ = {10^6}k{\rm{ N}}\\\end{array}

The force acting on satellite C from their rocket is given as follows:{F_C} = k{m_C}{L_C}

Substitute 100 kg for {m_C}and 2500 m for in the above expression  {F_C} = k{m_C}{L_C}

\begin{array}{c}\\{F_C} = k\left( {100{\rm{ kg}}} \right)\left( {2500{\rm{ m}}} \right)\\\\ = 0.25 \times {10^6}k{\rm{ N}}\\\end{array}

The force acting on satellite D from their rocket is given as follows:{F_D} = k{m_D}{L_D}

Substitute 100 kg for {m_D} and 10000 m for {L_D} in the expression{F_D} = k{m_D}{L_D}

\begin{array}{c}\\{F_D} = k\left( {100{\rm{ kg}}} \right)\left( {10000{\rm{ m}}} \right)\\\\ = {10^6}k{\rm{ N}}\\\end{array}

The force acting on satellite E from their rocket is given as follows:{F_E} = k{m_E}{L_E}

Substitute 800 kg for {m_E}  and 5000 m for  {L_E} in the expression {F_E} = k{m_E}{L_E}

\begin{array}{c}\\{F_E} = k\left( {800{\rm{ kg}}} \right)\left( {5000{\rm{ m}}} \right)\\\\ = 4.0 \times {10^6}k{\rm{ N}}\\\end{array}

The force acting on satellite F from their rocket is given as follows:{F_F} = k{m_F}{L_F}

Substitute 300 kg for {m_F} and 7500 m for {L_F} in the expression {F_F} = k{m_F}{L_F}

\begin{array}{c}\\{F_F} = k\left( {300{\rm{ kg}}} \right)\left( {7500{\rm{ m}}} \right)\\\\ = 2.25 \times {10^6}k{\rm{ N}}\\\end{array}

The value of forces obtained for the six-different satellite are as follows.

\begin{array}{l}\\{F_A} = {10^6}k{\rm{ N}}\\\\{F_B} = {10^6}k{\rm{ N}}\\\\{F_C} = 0.25 \times {10^6}k{\rm{ N}}\\\\{F_D} = {10^6}k{\rm{ N}}\\\\{F_E} = 4.0 \times {10^6}k{\rm{ N}}\\\\{F_F} = 2.25 \times {10^6}k{\rm{ N}}\\\end{array}

     The ranking of the net force acting on different satellite from largest to smallest is {F_E} > {F_F} > {F_A} = {F_B} = {F_D} > {F_C}

7 0
4 years ago
Other questions:
  • Which term related to electromagnetism applies only to electric force?
    5·1 answer
  • A bullet is fired straight up from a gun with a
    7·1 answer
  • Easy defimation of newtons second law of motion
    8·1 answer
  • Use the Travel Time function of the Interactivity to find the distance between each of your cities (their respective seismometer
    10·1 answer
  • True or False: Waves become stronger as they travel away from their source
    5·2 answers
  • If someone wanted to analyze a set of tree rings but didn't know when the tree lived, how could they find out?
    15·1 answer
  • HURRY IM TIMED !!!!!!!!!!
    8·2 answers
  • How do you calculate speed
    9·2 answers
  • A 4.0-kg object has 72 J of kinetic energy.<br> Determine its speed.
    8·1 answer
  • In Milikan’s experiment, a drop of radius of 1.64 μm and density 0.851 g/cm3 is suspended in the lower chamber when a downward-p
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!