Answer:
B. Direction
Explanation:
Speed is a scalar quantity and doesn't keep track of direction : Velocity is a vector quantity and is direction aware.
The final speed of the orange is 7.35 m/s
Explanation:
The motion of the orange is a free fall motion, since there is only the force of gravity acting on it. Therefore, it is a uniformly accelerated motion with constant acceleration
towards the ground. So we can use the following suvat equation:

where
v is the final velocity
u is the initial velocity
a is the acceleration
t is the time elapsed
For the orange in this problem, we have
u = 0 (it is dropped from rest)
is the acceleration
Substituting t = 0.75 s, we find the final velocity (and speed) of the orange:

Learn more about free fall:
brainly.com/question/1748290
brainly.com/question/11042118
brainly.com/question/2455974
brainly.com/question/2607086
#LearnwithBrainly
= Heat released to cold reservoir
= Heat released to hot reservoir
= maximum amount of work
= temperature of cold reservoir
= temperature of hot reservoir
we know that

eq-1
maximum work is given as
=
- 
using eq-1
=
- 