Answer:
C. hydrogen bonding
Explanation:
Ammonia and hydrogen fluoride are both able to exhibit hydrogen bonding due to containing nitrogen (in ammonia) and fluoride (obviously in hydrogen fluoride). Remember the unique qualities of NOF. :)
Answer:
1255.4L
Explanation:
Given parameters:
P₁ = 928kpa
T₁ = 129°C
V₁ = 569L
P₂ = 319kpa
T₂ = 32°C
Unknown:
V₂ = ?
Solution:
The combined gas law application to this problem can help us solve it. It is mathematically expressed as;

P, V and T are pressure, volume and temperature
where 1 and 2 are initial and final states.
Now,
take the units to the appropriate ones;
kpa to atm, °C to K
P₂ = 319kpa in atm gives 3.15atm
P₁ = 928kpa gives 9.16atm
T₂ = 32°C gives 273 + 32 = 305K
T₁ = 129°C gives 129 + 273 = 402K
Input the values in the equation and solve for V₂;

V₂ = 1255.4L
Answer: Option (B) is the correct answer.
Explanation:
Expression for the given decomposition reaction is as follows.

Let us assume that x concentration of
is present at the initial stage. Therefore, according to the ICE table,

Initial : x 0
Change : - 0.1 
Equilibrium : (x - 0.1) 0.2
Now, expression for
of this reaction is as follows.

Putting the given values into the above formula as follows.



x = 0.12
This means that
= x = 0.12 atm.
Thus, we can conclude that the initial pressure in the container prior to decomposition is 0.12 atm.
Answer: The given statement is true.
Explanation: If this reaction would have occurred, then this reaction would be considered as displacement reaction.
Displacement reactions are the reaction in which more reactive element displaces the less reactive element in a chemical reaction. This is based on the reactivity of elements.
Reactivity of elements is the tendency of the elements to gain or loose electrons. The reactivity decreases down the group in a periodic table.
In the given reaction, Iodine and chlorine are the elements of the same group in the periodic table and iodine lies below chlorine in the group. So, the reactivity of iodine is less than the reactivity of chlorine.
Hence, in the given reaction, iodine will not replace chlorine because it lies below in the periodic table.
