Answer:
The answer to the question is
The rate constant for the reaction is 1.056×10⁻³ M/s
Explanation:
To solve the question, e note that
For a zero order reaction, the rate law is given by
[A] = -k×t + [A]₀
This can be represented by the linear equation y = mx + c
Such that y = [A], m which is the gradient is = -k, and the intercept c = [A]₀
Therefore the rate constant k which is the gradient is given by
Gradient =
where [A]₁ = 8.10×10⁻² M and [A]₂ = 1.80×10⁻³ M
=
= -0.001056 M/s = -1.056×10⁻³ M/s
Threfore k = 1.056×10⁻³ M/s
Answer:
see note under explanation
Explanation:
When describing system and surroundings the system is typically defined as the 'object of interest' being studied and surroundings 'everything else'. In thermodynamics heat flow is typically defined as endothermic or exothermic. However, one should realize that the terms endothermic and exothermic are in reference to the 'system' or object of interest being studied. For example if heat is transferred from a warm object to a cooler object it is imperative that the system be defined 1st. So, with that, assume the system is a warm metal cylinder being added into cooler water. When describing heat flow then the process is exothermic with respect to the metal cylinder (the system) but endothermic to the water and surroundings (everything else).
Answer:
Cac2 is a answer please mark me brainliest