Answer:
U = 80.91 J
Explanation:
In order to calculate the electric potential energy between the three charges you use the following formula:
(1)
k: Coulomb's constant = 8.98*10^9Nm^2/C^2
q1: q2 charge
r1,2: distance between charges 1 and 2.
For the three charges you have:
(2)
You use the fact that q1=q2=q3=q and that the distance between charges are equal. Then, in the equation (2) you have:
q = 1.45μC = 1.45*10^-6C
r = 0.700mm = 0.700*10^-3m

The electric potential energy between the three charges is 80.91 J
Answer:
you can learn from here
https://www.toppr.com/ask/en-bd/question/a-car-is-moving-with-a-velocity-of-10-ms-the-driver-sees-a-wall/
Wavelength = speed / frequency = 340 / 17000 = 0.02 m
Answer:
The buoyant force is 3778.8 N in upward.
Explanation:
Given that,
Mass of balloon = 222 Kg
Volume = 328 m³
Density of air = 1.20 kg/m³
Density of helium = 0.179 kg/m³
We need to calculate the buoyant force acting
Using formula of buoyant force

Where,
= density of air
V = Volume of balloon
g = acceleration due to gravity
Put the value into the formula


This buoyant force is in upward direction.
Hence, The buoyant force is 3778.8 N in upward.
Answer:
20.96 m/s^2 (or 21)
Explanation:
Using the formula (final velocity - initial velocity)/time = acceleration, we can plug in values and manipulate the problem to give us the answer.
At first, we know a car is going 8 m/s, that is its initial velocity.
Then, we know the acceleration, which is 1.8 m/s/s
We also know the time, 7.2 second.
Plugging all of these values in shows us that we need to solve for final velocity. We can do so by manipulating the formula.
(final velocity - initial velocity) = time * acceleration
final velocity = time*acceleration + initial velocity
After plugging the found values in, we get 20.96 m/s/s, or 21 m/s