Answer:
Adding more substrate would overcome the effect of the compound
Explanation:
- Enzymes are biochemical catalysts that speed up chemical reactions. They act on specific substrate to convert them to products.
- Compounds known as inhibitors slow down the rate of enzyme activity.
- Inhibitors are classified as competitive and non-competitive inhibitors.
- Competitive inhibitors will compete with the substrate to bind the active sites on the enzyme. The effect of competitive inhibitors may be reduced by increasing the concentration of the substrate.
- The compound added by the biologist was a competitive inhibitor and therefore adding more substrate would overcome its effect on enzyme catalysis
- Non-competitive inhibitors binds the active site of the enzyme permanently and prevents the substrate from accessing the active sites.
Answer:
T2 =21.52°C
Explanation:
Given data:
Specific heat capacity of sample = 1.1 J/g.°C
Mass of sample = 385 g
Initial temperature = 19.5°C
Heat absorbed = 885 J
Solution:
Formula:
Q = m.c. ΔT
Q = amount of heat absorbed or released
m = mass of given substance
c = specific heat capacity of substance
ΔT = change in temperature
ΔT = Final temperature - initial temperature
885J = 385 g× 1.1 J/g.°C×(T2 - 19.5°C )
885 J = 423.5 J/°C× (T2 - 19.5°C )
885 J / 423.5 J/°C = (T2 - 19.5°C )
2.02°C = (T2 - 19.5°C )
T2 = 2.02°C + 19.5°C
T2 =21.52°C
Answer:
k+
Ba2+
Al3+
K+
S2-
you may think that if it has a + it would be bigger, but it is actually the opposite.
Answer is: a) is has increased.
There are two types of reaction:
1) endothermic reaction (chemical reaction that absorbs more energy than it releases).
For example, the breakdown of ozone is an endothermic process. Ozone has lower energy than molecular oxygen (O₂) and oxygen atom, so ozone need energy to break bond between oxygen atoms.
2) exothermic reaction (chemical reaction that releases more energy than it absorbs).
For example, ΔH(reaction) = -225 kJ/mol; this is exothermic reaction.
The answer is 4.41x10^1 m.
Explanation:
You would use this formula to calculate it
λ = C/f
Where,
λ (Lambda) = Wavelength in meters
c = Speed of Light (299,792,458 m/s)
f = Frequency
So we have the frequency, 68 Hz, and we have the speed of light. Now we put it into the equation and it will look like this:
λ= (299,792,458 m/s) / (68 Hz)
λ= 4.41x10^1