The first dissociation for H2X:
H2X +H2O ↔ HX + H3O
initial 0.15 0 0
change -X +X +X
at equlibrium 0.15-X X X
because Ka1 is small we can assume neglect x in H2X concentration
Ka1 = [HX][H3O]/[H2X]
4.5x10^-6 =( X )(X) / (0.15)
X = √(4.5x10^-6*0.15)
∴X = 8.2 x 10-4 m
∴[HX] & [H3O] = 8.2x10^-4
the second dissociation of H2X
HX + H2O↔ X^2 + H3O
8.2x10^-4 Y 8.2x10^-4
Ka2 for Hx = 1.2x10^-11
Ka2 = [X2][H3O]/[HX]
1.2x10^-11= y (8.2x10^-4)*(8.2x10^-4)
∴y = 1.78x10^-5
∴[X^2] = 1.78x10^-5 m
Answer:
i think several days of gray skies
Explanation:
since the weather is dry there would be no rain or snow but the weather would get much colder so just gray skies
Answer:
Explanation:
Bronsted Base is an H+ acceptor
No good answer Bronstead base does not accept hydroxide or electrons
2 Li(s) +Cl₂→ 2 Li⁺ (aq) + 2Cl⁻ (aq)
The cell potential of the reaction above is +4.40V
<em><u>calculation</u></em>
Cell potential =∈° red - ∈° oxidation
in reaction above Li is oxidized from oxidation state 0 to +1 therefore the∈° oxid = -3.04
Cl is reduce from oxidation state 0 to -1 therefore the ∈°red = +1.36 V
cell potential is therefore = +1.36 v -- 3.04 = + 4.40 V