Answer:
Detail is given below
Explanation:
Atomic radii trend along group:
As we move down the group atomic radii increased with increase of atomic number. The addition of electron in next level cause the atomic radii to increased. The hold of nucleus on valance shell become weaker because of shielding of electrons thus size of atom increased.
As the size of atom increases the ionization energy from top to bottom also decreases because it becomes easier to remove the electron because of less nuclear attraction and as more electrons are added the outer electrons becomes more shielded and away from nucleus.
In A we can see that there is one positive charge and force of attraction is 2.30×10⁻⁸ N and distance is 0.10 nm
In B we can see that negative charge is further away from nucleus because of greater distance thus force of attraction will be less. 0.58×10⁻⁸ N
In C this distance further increases and force also goes in decreasing 0.26×10⁻⁸ N.
Answer:
As an example of the processes depicted in this figure, consider a sample of water. When gaseous water is cooled sufficiently, the attractions between H2O molecules will be capable of holding them together when they come into contact with each other; the gas condenses, forming liquid H2O. For example, liquid water forms on the outside of a cold glass as the water vapor in the air is cooled by the cold glass.
Explanation:
Hopefully that helps!
To count the number of valence electrons we look at the electronic configuration and add the electrons form the electronic shell with the highest principal quantum number.
Rb: [Kr] 5s¹ - 1 valence electron
Xe: [Kr] 5s² 4d¹⁰ 5p⁶ - 8 valence electrons
Sb: [Kr] 5s² 4d¹⁰ 5p³ - 5 valence electrons
I: [Kr] 5s² 4d¹⁰ 5p⁵ - 7 valence electrons
In: [Kr] 5s² 4d¹⁰ 5p¹ - 3 valence electrons
Rank from most to fewest valence electrons:
Xe > I > Sb > In > Rb
Answer:
47.8 g
Explanation:
Remember the equation for percent yield:
% yield = actual / theoretical
We're given two of the values in the question, so plug n' play:
0.945 = 45.2 / theoretical
theoretical = 47.8 g
Keep in mind you can use mass here without converting to moles because we're working with products only. If you were given a mass of reactants, you would need to convert to moles and using a balanced chemical equation find the corresponding moles of product produced.
Answer:
length of wire = 38.82 m
Explanation:
∴ 16 gauge ≡ 0.05082 in * ( 2.54 cm/in ) = 0.12908 cm
∴ m spool = 1 Lb = 453.592 g
∴ ρ = 8.92 g/cm³
cross section area:
⇒ A = π*D²/4 = π*(0.12908)²/4 = 0.0131 cm²
⇒ L = ((453.592 g) *(cm³/8.92 g)) / ( 0.0131 cm² )
⇒ L = 3881.765 cm * ( m/100cm) = 38.82 m