A would be the correct answer. Its the only one to make sense since you are trying to solve the conflict!
Answer:
Electric field acting on the electron is 127500 N/C.
Explanation:
It is given that,
Mass of an electron, 
Charge on electron, 
Initial speed of electron, u = 0
Final speed of electron, 
Distance covered, s = 2 cm = 0.02 m
We need to find the electric field required. Firstly, we will find the acceleration of the electron from third equation of motion as :



According to Newton's law, force acting on the electron is given by :
F = ma


Electric force is given by :
F = q E, E = electric field


E = 127500 N/C
So, the electric field is 127500 N/C. Hence, this is the required solution.
The complete sentence is:
In a third class lever, the distance from the effort to the fulcrum is SMALLER the distance from the load/resistance to the fulcrum.
In fact, in a third class lever, the fulcrum is on one side of the effort and the load/resistance is on the other side, so the effort is located somewhere between the two of them. This means that the distance effort-fulcrum is smaller than the distance load-fulcrum.
Answer:
Equilibrium is when the rate of the forward reaction equals the rate of the reverse reaction. All reactant and product concentrations are constant at equilibrium.
Explanation:
Answer:
-75 cm
Explanation:
At l ; F = 350 Hz
At l + 15 cm ; F = 280 Hz
I = 350
I + 15 = 280
280I = 350(I + 15)
280I = 350I + 5250
280I - 350I = 5250
-70I = 5250
I = - 75cm
The length is - 75 cm