Answer:
a) θ₁ = 23.14 °
, b) θ₂ = 51.81 °
Explanation:
An address network is described by the expression
d sin θ = m λ
Where is the distance between lines, λ is the wavelength and m is the order of the spectrum
The distance between one lines, we can find used a rule of proportions
d = 1/600
d = 1.67 10⁻³ mm
d = 1-67 10⁻³ m
Let's calculate the angle
sin θ = m λ / d
θ = sin⁻¹ (m λ / d)
First order
θ₁ = sin⁻¹ (1 6.5628 10⁻⁷ / 1.67 10⁻⁶)
θ₁ = sin⁻¹ (3.93 10⁻¹)
θ₁ = 23.14 °
Second order
θ₂ = sin⁻¹ (2 6.5628 10⁻⁷ / 1.67 10⁻⁶)
θ₂ = sin⁻¹ (0.786)
θ₂ = 51.81 °
Answer:
5.571 sec
Explanation:
angular frequency = √ (k/m) = √ (49.3 / 5) = 3.14 rad/s
Period To = 2π / angular frequency
Period To = 2π/3.14 = 2 × 3.14 / 3.142 = 2.00 sec which you got
T measured by the observer = To / (√ (1 - (v²/c²))) = 2 / √( 1 - 0.871111) = 2 / 0.35901 = 5.571 sec
t=2.00/(1-√((2.80*10^8)^2/(3.00*10^8)^2))= should have been ( To / (√ (1 - (v²/c²))). where To = 2.00 sec
Well, the rings surrounding a planet are made out of rock. A ring surrounding the sun would be impossible since the sun can reach more than 27 million degrees Fahrenheit (15 million degrees Celsius.)
Hope this helped.
Explanation:
Area of ring 
Charge of on ring 
Charge on disk

![\begin{aligned}d v &=\frac{k d q}{\sqrt{x^{2}+a^{2}}} \\&=2 \pi-k \frac{a d a}{\sqrt{x^{2}+a^{2}}} \\v(1) &=2 \pi c k \int_{0}^{R} \frac{a d a}{\sqrt{x^{2}+a^{2}}} \cdot_{2 \varepsilon_{0}}^{2} R \\&=2 \pi \sigma k[\sqrt{x^{2}+a^{2}}]_{0}^{2} \\&=\frac{2 \pi \sigma}{4 \pi \varepsilon_{0}}[\sqrt{z^{2}+R^{2}}-(21)] \\&=\frac{\sigma}{2}(\sqrt{2^{2}+R^{2}}-2)\end{aligned}](https://tex.z-dn.net/?f=%5Cbegin%7Baligned%7Dd%20v%20%26%3D%5Cfrac%7Bk%20d%20q%7D%7B%5Csqrt%7Bx%5E%7B2%7D%2Ba%5E%7B2%7D%7D%7D%20%5C%5C%26%3D2%20%5Cpi-k%20%5Cfrac%7Ba%20d%20a%7D%7B%5Csqrt%7Bx%5E%7B2%7D%2Ba%5E%7B2%7D%7D%7D%20%5C%5Cv%281%29%20%26%3D2%20%5Cpi%20c%20k%20%5Cint_%7B0%7D%5E%7BR%7D%20%5Cfrac%7Ba%20d%20a%7D%7B%5Csqrt%7Bx%5E%7B2%7D%2Ba%5E%7B2%7D%7D%7D%20%5Ccdot_%7B2%20%5Cvarepsilon_%7B0%7D%7D%5E%7B2%7D%20R%20%5C%5C%26%3D2%20%5Cpi%20%5Csigma%20k%5B%5Csqrt%7Bx%5E%7B2%7D%2Ba%5E%7B2%7D%7D%5D_%7B0%7D%5E%7B2%7D%20%5C%5C%26%3D%5Cfrac%7B2%20%5Cpi%20%5Csigma%7D%7B4%20%5Cpi%20%5Cvarepsilon_%7B0%7D%7D%5B%5Csqrt%7Bz%5E%7B2%7D%2BR%5E%7B2%7D%7D-%2821%29%5D%20%5C%5C%26%3D%5Cfrac%7B%5Csigma%7D%7B2%7D%28%5Csqrt%7B2%5E%7B2%7D%2BR%5E%7B2%7D%7D-2%29%5Cend%7Baligned%7D)
Note: Refer the image attached
Answer:
(a) Potential energy of the child is converted into the kinetic energy at the bottom off the slide and a part of which is lost into friction generating heat between the contact surfaces.
(b) 
Explanation:
Given:
- mass of the child,

- height of the slide,

- initial velocity of the child at the slide,

- final velocity of the child at the bottom of slide,

(a)
∴The initial potential energy of the child is converted into the kinetic energy at the bottom off the slide and a part of which is lost into friction generating heat between the contact surfaces.
Initial potential energy:



Kinetic energy at the bottom of the slide:



(b)
Now, the difference in the potential and kinetic energy is the total change in the thermal energy of the slide and the seat of her pants.
This can be given as:


