Answer:
C. 590 mph

Explanation:
Given:
- velocity of jet,

- direction of velocity of jet, east relative to the ground
- velocity of Cessna,

- direction of velocity of Cessna, 60° north of west
Taking the x-axis alignment towards east and hence we have the velocity vector of the jet as reference.
Refer the attached schematic.
So,

&


Now the vector of relative velocity of Cessna with respect to jet:



Now the magnitude of this velocity:

is the relative velocity of Cessna with respect to the jet.
Answer:
fibrous =potato
taproot =radish
stilt =maize and sugar cane
Answer:
the ship's energy is greater than this and the crew member does not meet the requirement
Explanation:
In this exercise to calculate kinetic energy or final ship speed in the supply hangar let's use the relationship
W =∫ F dx = ΔK
Let's replace
∫ (α x³ + β) dx = ΔK
α x⁴ / 4 + β x = ΔK
Let's look for the maximum distance for which the variation of the energy percent is 10¹⁰ J
x (α x³ + β) =
- K₀
= K₀ + x (α x³ + β)
Assuming that the low limit is x = 0, measured from the cargo hangar
Let's calculate
= 2.7 10¹¹ + 7.5 10⁴ (6.1 10⁻⁹ (7.5 10⁴) 3 -4.1 10⁶)
Kf = 2.7 10¹¹ + 7.5 10⁴ (2.57 10⁶ - 4.1 10⁶)
Kf = 2.7 10¹¹ - 1.1475 10¹¹
Kf = 1.55 10¹¹ J
In the problem it indicates that the maximum energy must be 10¹⁰ J, so the ship's energy is greater than this and the crew member does not meet the requirement
We evaluate the kinetic energy if the System is well calibrated
W = x F₀ =
–K₀
= K₀ + x F₀
We calculate
= 2.7 10¹¹ -7.5 10⁴ 3.5 10⁶
= (2.7 -2.625) 10¹¹
= 7.5 10⁹ J
It would be 12hz because it