1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
aksik [14]
4 years ago
7

Two loudspeakers emit sound waves along the x-axis. The sound has maximum intensity when the speakers are 20 cm apart. The sound

intensity decreases as the distance between the speakers is increased, reaching zero at a separation of 30 cm.
a. What is the wavelength of the sound?
b. If the distance between the speakers continues to increase, at what separation will the sound intensity again be a maximum?
Physics
1 answer:
Sophie [7]4 years ago
7 0

Answer:

a. Wavelength = λ = 20 cm

b. Next distance of maximum intensity will be 40 cm

Explanation:

a. The distance between the two speakers is 20cm. SInce the intensity is maximum which refers that we have constructive interference and the phase difference must be an even multiple of π and equivalent path difference is nλ.

Now when distance increases upto 30 cm between the speakers, the sound intensity becomes zero which means that there is destructive interference and equivalent path is now increased from nλ to nλ + λ/2.

This we get the equation:

(nλ + λ/2) - nλ = 30-20

λ/2 = 10

λ = 20 cm

b. at what distance, sound intensity will be maximum again.

For next point calculation for maximum sound intensity, the path difference must be increased (n+1) λ. The distance must increase by λ/2 from the point of zero intensity.

= 30 + λ/2

= 30 + 20/2

=30+10

=40 cm

You might be interested in
Determine the energy in joules of a photon whose frequency is 3.55 x10^17 hz
asambeis [7]
By using the Plancks-Einstein equation, we can find the energy;
E = hf
where h is the plancks constant = 6.63 x 10⁻³⁴
f = frequency = 3.55 x 10¹⁷hz
E = (6.63 x 10⁻³⁴) x (3.55 x 10¹⁷)
E = 2.354 x 10⁻¹⁶J
3 0
3 years ago
Two forces are applied to a car in an effort to accel-
mestny [16]

Answer:

R=2F

Explanation:

As the forces are in same direction so the resultant force will be:

R=F+F

R=2F

4 0
4 years ago
2 Physic Questions For 20 Points ✨
Anna [14]
Jupiter Cannot Become A Star.
Jupiter Is The Fastest Spinning Planet In The Solar System.
The Clouds On Jupiter Are Only 50 km Thick.
8 0
3 years ago
A spelunker is surveying a cave. She follows a passage that takes her a distance 184 m straight west, then a distance 220 m in a
Sever21 [200]
Refer to the diagram shown below.

Define the unit vector i to point in the eastern direction, and the unit vector j to point in the northern direction.

The first distance is 184 m west. It is represented by
d₁ = -184 i

The second distance is 220 m at 30° south of east. It is
d₂ = 220(cos 30° i - sin 30° j) = 190.53 i - 110 j

The third distance is 104 m at 80 east of north. It is
d₃ = 104(sin 80° i + cos 80° j) =  102.42 i + 18.06 j

Let the fourth distance be 
d₄ = a i + b j

Because the traveler ends back at the original position, the vector sum of the distances is zero. It means that each component of the vector sum is zero.

The x-component yields
-184 + 190.53 + 102.42 + a = 0
a = -108.95

The y-component yields
0 - 110 + 18.06 + b = 0
b = 91.94

The magnitude of the fourth displacement is
√[(-108.95)² + 91.94² ] = 142.56 m

The direction is at an angle θ north of west, given by
θ = tan⁻¹ (91.94/108.95) = 40.2°

Answer:
The fourth displacement has a magnitude of 142.56 m. It is about 40° north of west.

7 0
3 years ago
Read 2 more answers
2200 kg semi truck driving down the highway has lost control. The truck rolls across the median and into oncoming traffic. The t
serious [3.7K]

Answer:

The semi truck travels at an initial speed of 69.545 meters per second downwards.

Explanation:

In this exercise we see a case of an entirely inellastic collision between the semi truck and the car, which can be described by the following equation derived from Principle of Linear Momentum Conservation: (We assume that velocity oriented northwards is positive)

m_{S}\cdot v_{S}+m_{C}\cdot v_{C} = (m_{S}+m_{C})\cdot v (1)

Where:

m_{S}, m_{C} - Masses of the semi truck and the car, measured in kilograms.

v_{S}, v_{C} - Initial velocities of the semi truck and the car, measured in meters per second.

v - Final speed of the system after collision, measured in meters per second.

If we know that m_{S} = 2200\,kg, m_{C} = 2000\,kg, v_{C} = 45\,\frac{m}{s} and v = -15\,\frac{m}{s}, then the initial velocity of the semi truck is:

m_{S}\cdot v_{S} = (m_{S}+m_{C})\cdot v -m_{C}\cdot v_{C}

v_{S} = \frac{(m_{S}+m_{C})\cdot v - m_{C}\cdot v_{C}}{m_{S}}

v_{S} = \left(1+\frac{m_{C}}{m_{S}} \right)\cdot v - \frac{m_{C}}{m_{S}} \cdot v_{C}

v_{S} = v +\frac{m_{C}}{m_{S}}\cdot (v-v_{C})

v_{S} = -15\,\frac{m}{s}+\left(\frac{2000\,kg}{2200\,kg} \right) \cdot \left(-15\,\frac{m}{s}-45\,\frac{m}{s}  \right)

v_{S} = -69.545\,\frac{m}{s}  

The semi truck travels at an initial speed of 69.545 meters per second downwards.

3 0
3 years ago
Other questions:
  • A rock of mass 200kg is dropped from a height of 200m. What is the Kinetic energy at:
    14·2 answers
  • A car experiences a centripetal acceleration of 4.4 m/s ^2 as ur rounds a corner with a speed of 15 m/s. What is the radius of t
    9·1 answer
  • Hurricane formation is rare within ________ degrees of the equator.
    5·1 answer
  • Can someone help me with this but give details please? (it's a physics class)​
    6·1 answer
  • Why does the number of cooling fins effect the rate of energy transfer from a radiator?
    14·1 answer
  • 1. How much energy would be required to melt 450 grams of ice at 0°C?
    12·1 answer
  • Select the correct answer from each drop-down menu.
    8·2 answers
  • How much work does the electric field do in moving a proton from a point with a potential of +145 v to a point where it is -55 v
    12·1 answer
  • A Thomson's gazelle can run at very high speeds, but its acceleration is relatively modest. A reasonable model for the sprint of
    8·1 answer
  • A skydiver of mass m jumps from a hot air balloon and falls a distance d before reaching a terminal velocity of magnitude v . As
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!