Answer:
Angular momentum = 0.7 kg.m²/s
Angular velocity = 583.3 rad/s
Explanation:
1. The torque τ is related to the angular momentum L by the relation
τ = ΔL/Δt
ΔL = τΔt
τ = 10 N. m
Δt = 70 ms = 70 × 10⁻³s
ΔL = (10 N. m) × (70 × 10⁻³s) = 700 × 10⁻³ kg.m²/s = 0.7 kg.m²/s
2. The rotational inertia I relates the angular momentum L to the angular velocity w
L = Iw
w = L/I
L = 0.7 kg.m²/s
I = 1.2 × 10⁻³ kg.m²
w = (0.7 kg.m²/s)/(1.2 × 10⁻³ kg.m²) = 583.3 rad/s
Answer:
Explanation:
When saw slices wood by exerting a force on the wood , wood also exerts a reaction force on the saw in opposite direction which is equal to the force of action that is 104 N.
So torque exerted by wood on the blade
= force x perpendicular distance from the axis of rotation
= 104 x .128
=13.312 Nm.
Since this torque opposes the movement of blade , it turns the blade slower.
Answer:
Train accaleration = 0.70 m/s^2
Explanation:
We have a pendulum (presumably simple in nature) in an accelerating train. As the train accelerates, the pendulum is going move in the opposite direction due to inertia. The force which causes this movement has the same accaleration as that of the train. This is the basis for the problem.
Start by setting up a free body diagram of all the forces in play: The gravitational force on the pendulum (mg), the force caused by the pendulum's inertial resistance to the train(F_i), and the resulting force of tension caused by the other two forces (F_r).
Next, set up your sum of forces equations/relationships. Note that the sum of vertical forces (y-direction) balance out and equal 0. While the horizontal forces add up to the total mass of the pendulum times it's accaleration; which, again, equals the train's accaleration.
After doing this, I would isolate the resulting force in the sum of vertical forces, substitute it into the horizontal force equation, and solve for the acceleration. The problem should reduce to show that the acceleration is proportional to the gravity times the tangent of the angle it makes.
I've attached my work, comment with any questions.
Side note: If you take this end result and solve for the angle, you'll see that no matter how fast the train accelerates, the pendulum will never reach a full 90°!
Answer:4-strikes the plane at same time as the other body
Explanation:
Given
If both bodies is falling on a horizontal plane and second body is given an acceleration in horizontal direction then it does not change the time to reach the Horizontal Plate as there is no change in vertical direction.
Horizontal acceleration will give only horizontal range and horizontal velocity.