As for me, there are two suitable answers for the question represented above and here is a short explanation why I consider these two to be correct :
D. The horizontal velocity of the projectile and <span>B. The length of time before it lands
</span>

-- this led me to answers! Hope everything is clear! Regards!<span>
</span>
Answer:
KE = 2.535 x 10⁷ Joules
Explanation:
given,
angular speed of the fly wheel = 940 rad/s
mass of the cylinder = 630 Kg
radius = 1.35 m
KE of flywheel = ?
moment of inertia of the cylinder

=
= 574 kg m²
kinetic energy of the fly wheel

KE = 2.535 x 10⁷ Joules
the kinetic energy of the flywheel is equal to KE = 2.535 x 10⁷ Joules
False because currents do not flow easily through insulators. If it only said conductors, then it would be true.
Answer:
Option B, Some of the cars' kinetic energy was converted to sound and heat energy.
Explanation:
In an elastic collision, no energy is lost during and after collision. Thus, it can be said that in an elastic collision both momentum and kinetic energy remains conserved.
While in non-elastic collision, kinetic energy of the system is lost. However, the momentum of the system is conserved. Generally, during and after collision some of the kinetic energy is lost as thermal energy, sound energy etc.
Hence, option B is correct
Answer:
Option B
Explanation:
Option A is the wrong answer because the horizontal vector is in the opposite direction.
Option C is the wrong answer as the horizontal vector is in the opposite direction and all the vectors are connected head to tail [of the arrows] [Triangle law of vector addition]
Option D is the wrong answer as the horizontal vector is in the opposite direction.