If the echo (the reflected sound) reaches your ear less than about
0.1 second after the original sound, your brain doesn't separate them,
and you're not aware of the echo even though it's there.
If the echo comes from, say, a wall, 0.1 second means you'd have to be
about 17 meters away from the wall. If you're closer than that, then the
echo reaches you in less than 0.1 second and you're not aware of it.
A. 30 meters . . .
No. You hear that echo easily
B. you're standing within range of both sounds . . .
No. You hear that echo easily, if you're at least 17 meters from the wall.
C. less than 0.1 second later . . .
That's it. The echo is there but your brain doesn't know it.
D. 21.5 meters
No. You hear that echo easily.
If velocity is constant, then the object is moving
at constant speed in a straight line.
Answer:
The potential for r > rb is equal to zero.
Explanation:
For r > rb, the potential is:

Then, the net potential is:



<h3>
Answer: D) 30</h3>
Angle of incidence always equals angle of reflection. Think of a tennis ball being hit into a wall. The ball will bounce off at the same angle that it approached with. The angles mentioned are formed through the line called the "normal", which is the line perpendicular to the surface.
True, an object at rest stays and rest and an object in motion stays in motion