If the resistance of the Air is ignored, we can use the theory given by Galileo in which he warned that the thermal velocity of a body in free fall was given by

Where
g = Gravitational acceleration
t = time
As we can see the speed of objects in free fall is indifferent to the position that is launched (as long as the resistance of the air is ignored) or its mass.
Both bodies will end with the same thermal speed.
Answer:
Pluto
Explanation:
In our solar system, we have several planet. Pluto is one of the. Pluto is a planet that is highly oval shaped orbit and eccentric that brings it inside the another orbit. It get inside the orbit of Neptune. Sometimes even Neptune get far away from sun in comparison to the dwarf planet Pluto.
It is very strange happening in the world of planet. it occurs in the year of 1979 and 1999. But Pluto never ever crashed into Neptune. It happen because Neptune takes every three lapse that takes around the sun but Pluto makes only two lapse. This happening prevents two bodies from clashes.
Answer:
Acceleration, 
Explanation:
Initial speed of the skater, u = 8.4 m/s
Final speed of the skater, v = 6.5 m/s
It hits a 5.7 m wide patch of rough ice, s = 5.7 m
We need to find the acceleration on the rough ice. The third equation of motion gives the relationship between the speed and the distance covered. Mathematically, it is given by :




So, the acceleration on the rough ice
and negative sign shows deceleration.
Mechanical energy is the answer
Thank you for posting your question here at brainly. I hope the answer will help you. Feel free to ask more questions here.
Below is the solution:
W done by Normal = 0. (make the incline flat, Normal force goes directly up: no work done)
<span>W done by gravity = w*displacement = (11kg*9.8) * 7.5sin(35) = -463J </span>
<span>W done by friction is the opposite of the work done by weight because the object is not moving. Therefore W done by friction = 463J</span>