Answer:
0.34 sec
Explanation:
Low point of spring ( length of stretched spring ) = 5.8 cm
midpoint of spring = 5.8 / 2 = 2.9 cm
Determine the oscillation period
at equilibrum condition
Kx = Mg
g= 9.8 m/s^2
x = 2.9 * 10^-2 m
k / m = 9.8 / ( 2.9 * 10^-2 ) = 337.93
note : w =
=
= 18.38 rad/sec
Period of oscillation = 
= 0.34 sec
We may be positive that an object is in mechanical equilibrium if it is not rotating and experiences no acceleration.
<h3>What is
mechanical equilibrium?</h3>
There are numerous other definitions for mechanical equilibrium that are all mathematically comparable in addition to the definition in terms of force. A system is in equilibrium in terms of momentum if the component motions are all constant. If velocity is constant, the system is in equilibrium in terms of velocity. When an item is in a state of rotational mechanical equilibrium, its angular momentum is preserved and its net torque is zero. More generally, equilibrium is reached in conservative systems at a configuration space location where the gradient of the potential energy concerning the generalized coordinates is zero.
To learn more about mechanical equilibrium, visit:
<u>brainly.com/question/14246949</u>
#SPJ4
Answer:
Explanation:
The general consensus is that it's more “natural” to define distance (meter) and time (second) and as base units, and derive velocity a the ratio between them. ... The general consensus is that it's more “natural” to define distance (meter) and time (second) and as base units, and derive velocity a the ratio between them.
Red is the lowest because it has the shortest wavelengths