Answer:
D
Explanation:
According to this question, each model of molecules in the options contains spheres of different colors and sizes representing different types of atoms. The atoms of the same element are the spheres of same color and size while atoms of different element are of different color or size.
Therefore, the model showing a molecule of a substance that is made up of three elements is model D because it is made up of three distinct spheres representing atoms of each element.
- The red sphere is the atom of the first element
- The big dark sphere is the atom of the second element
- The small white sphere is the atom of the third element
Answer:
D. 5 moles
Explanation:
C3H8 + 5O2 → 4H2O + 3CO2
5 mol 3 mol
So, to make 3 mol CO2 5 mol O2 are needed.
Answer:
If an atom looses all of its electrons then it will become positively charged. It will also turn into an Ion.
Explanation:
1) Chemical reaction
HCl + NaOH ---> NaCl + H2O
25.0 ml
0.150 M 0.250M
2) 50% completion => 0.025 l * 0.150 M * (1/2) = 0.001875 mol HCl consumed and 0.001875 mol HCl in solution
0.001875 mol HCl => 0.001875 mol H(+)
Volume = Volume of HCl solution + Volumen of NaOH solution added
Volume of HCl solution = 0.0250 l
Volume of NaOH = n / M = 0.001875 mol / 0.250M = 0.0075 l
Total volume = 0.0250 l + 0.0075 l = 0.0325 l
[H+] = 0.001875 mol / 0.0325 l = 0.05769 M
pH = - log [H+] = - log (0.05769) = 1.23
Answer: 1.23
3) Equivalence point
0.02500 l * 0.150 M = 0.250M * V
=> V = 0.02500 * 0.150 / 0.250 = 0.015 l
4) 1.00 ml NaOH added beyond the equivalence point
1.00 ml * 1 l / 1000 ml * 0.250 M = 0.00025 mol NaOH in excess
0.00025 mol NaOH = 0.00025 mol OH-
Volume of the solution = 0.02500 l + 0.015 l + 1.00/1000 l = 0.041 l
[OH-] = 0.00025 mol / 0.041 l = 0.00610 M
pOH = - log (0.00610) = 2.21
pH + pOH = 14 => pH = 14 - pOH = 14 - 2.21 = 11.76
Answer: 11.76
Answer: <em>Newton's first law</em>
Explanation: <em>The idea that objects only change their velocity due to a force is encapsulated in Newton's first law. Newton's first law: An object at rest remains at rest, or if in motion, remains in motion at a constant velocity unless acted on by a net external force.</em>
<em />