Answer : The value of equilibrium constant for this reaction at 328.0 K is 
Explanation :
As we know that,

where,
= standard Gibbs free energy = ?
= standard enthalpy = 151.2 kJ = 151200 J
= standard entropy = 169.4 J/K
T = temperature of reaction = 328.0 K
Now put all the given values in the above formula, we get:


The relation between the equilibrium constant and standard Gibbs free energy is:

where,
= standard Gibbs free energy = 95636.8 J
R = gas constant = 8.314 J/K.mol
T = temperature = 328.0 K
K = equilibrium constant = ?
Now put all the given values in the above formula, we get:


Therefore, the value of equilibrium constant for this reaction at 328.0 K is 
By Gay Lussacs law you can find the pressure. First both temperatures of Celsius must change to Kelvin by adding 273. Temperature one will be 308K and temperature 2 will be 258K
With this info, you can now find the pressure with Lussacs law
P1 = P2
— —
T1 T2
Pressure 1 is given which is 32 psi so just plug it all in and find P2
32 = x
—— ——
308 258
308x = 8256 (Cross multiply)
X = 26.8 (divide both sides by 308)
Answer is 26.8 PSI
This makes sense because as temperature increases pressure increases, as well as when temperature decreases, pressure decreases. Since it’s a colder day the pressure will be lower.
Δmc
2
For one reaction:
Mass Defect =Δm
=2(m
H
)−m
He
−m
n
=2(2.015)−3.017−1.009
=0.004 amu
1 amu=931.5 MeV/c
2
Hence,
E=0.004×931.5 MeV=3.724 MeV
E=3.726×1.6×10
−13
J=5.96×10
−13
J
For 1 kg of Deuterium available,
moles=
2g
1000g
=500
N=500N
A
=3.01×10
26
Energy released =
2
N
×5.95×10
−13
J
=8.95×10
13
Heterogeneous-a mixture of two or more things
solution-a substance that dissolves
suspension-mixture where solid particles do not dissolve
colloid-does not settle and cannot be seperated
Heterogeneous
- tuna casserole
-chocolate chip cookies
-gelatin dessert
-green salad
Solution
-oil (?) depends
Suspension
-vinegar salad dressing
-oil (?) it could go in either catagory
Colloid
-vinegar salad dressing
-oil (?)