<span>1. MgBr2
Soluble.
Rule: all the binary compounds of the group 17 (different to F) with metals are solubles, except those formed with Ag, Hg (I) and Pb.
2. PbI2
Insoluble.
Rule: it is one of the exceptions stated in the rule above.
3. (NH4)2CO3
Soluble.
Rule: salts containing NH4(+) are soluble.
4. ZnSO4
Soluble
Rule: </span><span>This salt is not an exception to the rule that most sulfate salts are soluble. Important exceptions to this rule include BaSO4,
PbSO4, Ag2SO4 and SrSO4
5. Sr(OH)2
Soluble (slightly soluble).
Rule: </span><span>Hydroxide salts of Group II elements (Ca,
Sr, and Ba) are slightly soluble</span>
Answer:

Explanation:
Mass of one tablet = 20 mg
Mass of two tablets = 
Percent that is soluble in water = 40%
Mass of tablet that is soluble in water = 
So, mass of solute is 
Density of water = 1 kg/L
Volume of water = 1 L
So, mass of 1 L of water is 
PPM is given by

Hence, the concentration of iodine in the treated water
.
Answer:
1 M
Explanation:
The molarity of a solution, M, is a measure of the concentration of that solution and it refers to the number of moles of solute (mol) per liter (L) of solution. The molarity (M) can be calculated using the formula:
M = number of moles (n) /volume (V)
In this question, a 500 ml aqueous solution of Na3PO4 was prepared using 82g of the solute.
Molar mass of Na3PO4 = 23(3) + 15 + 16(4)
= 69 + 31 + 64
= 164g/mol
Mole = mass/molar mass
mole = 82/164
mole = 0.5 mol
Volume in Litres (L) = 500 ml ÷ 1000 = 0.500L
Therefore, Molarity (M) = 0.5/0.500
Molarity = 1 M or 1 mol/L
Answer: That would be false because it is the contact between two layers representing a gap in the geologic record, usually from the erosion of the layers which would normally be expected to appear.
Explanation:
Have a good day
I hope this helps if not sorry :(
Stay motivated
Explanation:
in the case of blood loss, you need blood from someone with your blood type or with universal donor type