Stirring this is because the three elements are factors affecting dissolving of a solvent. Eg temprature affects in hotness or coldness, Particle size affects whether it is big or small while quantity of soluble affects by the amount
a homogeneous mixture is a mixture that appears to be one thing. for example air would be one.
<h3>
Answer:</h3>
1.827 × 10²⁴ molecules H₂S
<h3>
General Formulas and Concepts:</h3>
<u>Math</u>
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Chemistry</u>
<u>Compounds</u>
- Writing Compounds
- Acids/Bases
<u>Atomic Structure</u>
- Reading a Periodic Table
- Using Dimensional Analysis
- Avogadro's Number - 6.022 × 10²³ atoms, molecules, formula units, etc.
<h3>
Explanation:</h3>
<u>Step 1: Define</u>
103.4 g H₂S (Sulfuric Acid)
<u>Step 2: Identify Conversions</u>
Avogadro's Number
Molar Mass of H - 1.01 g/mol
Molar Mass of S - 32.07 g/mol
Molar Mass of H₂S - 2(1.01) + 32.07 = 34.09 g/mol
<u>Step 3: Convert</u>
- Set up:

- Multiply:

<u>Step 4: Check</u>
<em>Follow sig fig rules and round. We are given 4 sig figs.</em>
1.82656 × 10²⁴ molecules H₂S ≈ 1.827 × 10²⁴ molecules H₂S
Answer: The empirical formula for the given compound is 
Explanation : Given,
Percentage of H = 18 %
Percentage of N = 82 %
Let the mass of compound be 100 g. So, percentages given are taken as mass.
Mass of H = 18 g
Mass of N = 82 g
To formulate the empirical formula, we need to follow some steps:
Step 1: Converting the given masses into moles.
Moles of Hydrogen = 
Moles of Nitrogen = 
Step 2: Calculating the mole ratio of the given elements.
For the mole ratio, we divide each value of the moles by the smallest number of moles calculated which is 5.8 moles.
For Hydrogen = 
For Nitrogen = 
Step 3: Taking the mole ratio as their subscripts.
The ratio of H : N = 3 : 1
Hence, the empirical formula for the given compound is 