Answer:
1)alkali metals
2)1g/ml
3) mercury
Explanation:
<em><u>HEY!</u></em><em><u>!</u></em><em><u>^</u></em><em><u>^</u></em>
<em><u>have </u></em><em><u>a </u></em><em><u>good </u></em><em><u>day</u></em>
<em><u>thank </u></em><em><u>me </u></em><em><u>later</u></em>
<em><u>carryonlearing </u></em>
Explanation:
It is given that aluminium nitrate and calcium chloride are mixed together with sodium phosphate.
And,
Let us assume that the solubility be "s". And, the reaction equation is as follows.

s = 
Also, 

s = 
This means that first, aluminium phosphate will precipitate.
Now, we will calculate the concentration of phosphate when calcium phosphate starts to precipitate out using the
expression as follows.
![K_{sp} = [Ca^{2+}]^{3}[PO^{3-}_{4}]^{2}](https://tex.z-dn.net/?f=K_%7Bsp%7D%20%3D%20%5BCa%5E%7B2%2B%7D%5D%5E%7B3%7D%5BPO%5E%7B3-%7D_%7B4%7D%5D%5E%7B2%7D)
![2.0 \times 10^{-29} = (0.016)^{3}[PO^{3-}_{4}]^{2}](https://tex.z-dn.net/?f=2.0%20%5Ctimes%2010%5E%7B-29%7D%20%3D%20%280.016%29%5E%7B3%7D%5BPO%5E%7B3-%7D_%7B4%7D%5D%5E%7B2%7D)
![2.0 \times 10^{-29} = 4.096 \times 10^{-6} \times [PO^{3-}_{4}]^{2}](https://tex.z-dn.net/?f=2.0%20%5Ctimes%2010%5E%7B-29%7D%20%3D%204.096%20%5Ctimes%2010%5E%7B-6%7D%20%5Ctimes%20%5BPO%5E%7B3-%7D_%7B4%7D%5D%5E%7B2%7D)
= 
=
M
Similarly, calculate the concentration of aluminium at this concentration of phosphate as follows.

![K_{sp} = [Al^{3+}][PO^{3-}_{4}]](https://tex.z-dn.net/?f=K_%7Bsp%7D%20%3D%20%5BAl%5E%7B3%2B%7D%5D%5BPO%5E%7B3-%7D_%7B4%7D%5D)
![9.84 \times 10^{-21} = [Al^{3+}] \times 2.21 \times 10^{-12}](https://tex.z-dn.net/?f=9.84%20%5Ctimes%2010%5E%7B-21%7D%20%3D%20%5BAl%5E%7B3%2B%7D%5D%20%5Ctimes%202.21%20%5Ctimes%2010%5E%7B-12%7D)
M
Thus, we can conclude that concentration of aluminium will be
M when calcium begins to precipitate.
The relationship between energy of a single photon and its wavelength can be determined using the formula E=hc/lambda where E is energy, h is Planck's constant, c is the speed of light, and lambda is photons.
Before being able to solve for energy, need to convert nanometers to meters.
407 nm (1 m/1 x 10^9 nm) = 4.07 x 10^-7 m
Then plug in the values we know into the equation.
E h(Planck's constant) c(speed of light)
E = (6.63 x 10^-34 Js)(3 x 10^8 m/s) / 4.07 x 10^-7 m (lambda)
E=(0.000000000000000000000000000000000663js)(300,000,000m/s)=1.989×10^-25j/ms
E=1.989x10^-25j/ms /{divided by} 4.07x10^-7m = 4.8869779x10^-33 J (the meters cancel out)
E = 4.89 x 10^-33 J
This gives us the energy in Joules of a single photon. Now, we can find the number of photons in 0.897 J
0.897J / 4.89 x 10^-33 J = ((0.897 J) / 4.89) x ((10^(-33)) J) = 1.8343558 x 10^-34
1.83435583 × 10-34m4 kg2 / s4 photons
Answer:
Acceleration = (v Final −v Initial)/(t Final −t Initial). Where v stands for velocity and t stands for time. In algebraic notation, the formula can be expressed as: a=Δv/Δt; Acceleration can be defined as the rate of change of velocity with respect to time.