Answer:
Empirical formula: CH₃O
Empirical formula mass = 31 g/mol
Explanation:
Data Given:
Molecular Formula = C₁₀H₃₀O₁₀
Empirical Formula = ?
Empirical Formula mass =
Solution
Empirical Formula:
Empirical formula is the simplest ration of atoms in the molecule but not all numbers of atoms in a compound.
So,
The ratio of the molecular formula should be divided by whole number to get the simplest ratio of molecule
As
C₁₀H₃₀O₁₀ Consist of 10 Carbon (C) atoms, 30 Hydrogen (H) atoms, and 10 Oxygen (O) atoms.
Now
Look at the ratio of these three atoms in the compound
C : H : O
10 : 30 : 10
Divide the ratio by two to get simplest ratio
C : H : O
10/10 : 30/10 : 10/10
1 : 3 : 1
So for the empirical formula the simplest ratio of carbon to hydrogen to oxygen is 1:3:1
So the empirical formula will be
Empirical formula of C₁₀H₃₀O₁₀ = CH₃O
Now
To find the empirical formula mass in g/mol
Formula mass:
Formula mass is the total sum of the atomic masses of all the atoms present in a formula unit.
**Note:
if we represent the molar mass of the empirical formula for one mol in grams then it is written as g/mol
So,
As the empirical formula of C₁₀H₃₀O₁₀ is CH₃O
Then Its empirical formula mass will be
CH₃O
Atomic Mass of C = 12
Atomic Mass of H = 3
Atomic Mass of O = 16
Total Molar mass of CH₃O
CH₃O = 12 + 3(1) + 16
CH₃O = 12 + 3 + 16
CH₃O = 31 g/mol
1 ba+2 br——>1 babr2
u just have to make sure u have the same number of each type of atom on either side of the equation:)
Answer:
Option B
Explanation:
As Brønsted-Lowry theory states, acids are the ones that can donate protons.
When a proton is donated, it is released to become medium more acidic.
HCl is a strong acid.
HCl (l) + H₂O (l) → H₃O⁺ (aq) + Cl⁻(aq)
These always reffers to strong acid where the dissociation is 100% completed.
In a weak acid, dissociation is not 100% complete, that's why we have an equilibrium.
HA (l) + H₂O (l) ⇄ H₃O⁺ (aq) + A⁻(aq) Ka
Answer:
Explanation:
Given : Density - 2.41 g/liter
Temperature - 25° C
Pressure : 770 mm Hg
R = 0.0821 L atm mol-¹K-¹
Find : Molecular mass of gas
Solution : Ideal gas equation with respect to density will be : PM = dRT. In the formula, P is pressure, M is molecular mass, d is density, R is gas constant and T is temperature.
Keeping the values in equation-
Pressure : 770 mm Hg = 1 atm
Temperature : 273 + 25 = 298 K
M = dRT/P
M = (2.41*0.0821*298)/1
M = 58.96 gram/mol
Thus, the molecular mass of gas is 58.96 gram/mol.
Rris is how u right it Mg=? Because it ask u a question and then you put the equal sign and then you put the question mark because you don't know it yet