Answer:
Explanation:
A ) angular velocity ω = 2π / T
= 2 x 3.14 / 60
= .10467 rad / s
linear velocity v = ω R
= .10467 x 50
= 5.23 m / s
centripetal force = m v² / R
= mg v² / gR
= 834 x 5.23² / 9.8 x 50
= 46.55 N
B )
apparent weight
= mg - centripetal force
= 834 - 46.55
= 787.45 N
C ) apparent weight
= mg + centripetal force
= 834 + 46.55
= 880.55 N.
D )
For apparent weight to be zero
centripetal force = mg
mg = mv² / R
v² = gR
= 9.8 x 50
= 490
v = 22.13 m /s
time period of revolution
= 2π R /v
2 x 3.14 x 50 / 22.13
= 14.19 s
Answer:
2.12 J
Explanation:
Initial kinetic energy = final elastic energy + work by friction
KE = EE + W
KE = ½ kx² + W
5 J = ½ (1600 N/m) (0.06 m)² + W
W = 2.12 J
Answer:
The magnitude of the electrostatic force is 120.85 N
Explanation:
We can use Coulomb's law to find the electrostatic force between the down quarks.
In scalar form, Coulomb's law states that for charges
and
separated by a distance d, the magnitude of the electrostatic force F between them is:

where
is Coulomb's constant.
Taking the values:


and knowing the value of the Coulomb's constant:

Taking all this in consideration:


This is observational learning because Ian observed that his peers waited in the cafeteria until the first bell rings. He decided to imitate them.