Answer:
Barium has the same number of valence electrons as calcium
Explanation:
Valence electrons is the number of electrons of an atom on the outer shell.
Those valence electrons can participate in the formation of a chemical bond (if the outer shell is not closed); in a single covalent bond, both atoms in the bond contribute one valence electron in order to form a shared pair.
<u>Calcium</u> is an atom, part of group 2, called the alkaline earth metals. The alkaline earth metals have 2 valence electrons.
<u>Sulfur </u>is part of a group 16, called the chalcogens or oxygen family. Those atoms have 6 valence electrons. They can form a bound with atoms of group 2 such as calcium, but do not have the same number of valence electrons.
<u>Potassium</u> is part of group 1, called the alkali metals or lithium family. Those atoms have 1 valence electrons. That means Potassium do not have the same number of valence electrons like calcium.
<u>Neon</u> is part of group 18, the noble gasses. Those are stable atoms, which means they have 8 valence electrons. They do not have the same number of valence electrons like Calcium.
<u>Barium</u> an atom, part of group 2, called the alkaline earth metals. The alkaline earth metals have 2 valence electrons. Calcium is also part of this group.
This means barium has the same number of valence electrons as Calcium.
Answer:
a) A microstate is a snapshot of positions and speeds at a particular instant.
b) A thermodynamic state is a single possible arrangement of the positions and kinetic energies of the molecules.
c) A thermodynamic state is a set of conditions, usually temperature and pressure, that defines the properties of a bulk material.
d) A microstate is a single possibility for all the positions and kinetic energies of all the molecules in a sample.
e) A thermodynamic state is a set of conditions, usually temperature, volume and number of moles, that defines the properties of a bulk material.
Explanation:
A state of a system in thermodynamics give the properties that a material is been made up, these properties could be pressure, temperature, volumes and others , they are been called thermodynamic property
Microstates helps us to know how molecules is been arranged in single instant. Kinetics energy as well as position of molecules in a particular substance can be known in single instant.
Since hydrogen bonding is a stronger intermolecular force than van der Waals forces, more energy is required to separate the molecules of ethanol than the molecules of ethane. Thus ethanol has a higher melting point than ethane.