Answer:
Dependent on the element that reacted with carbon
Explanation:
Nuclear fusion is the combination of small atomic nuclei into larger ones usually accompanied with the release of a large amount of energy.
From the problem stated, carbon fuses with another atom. The combined atom would have more nuclear particles in terms of protons and neutrons than the combining atoms. This will eventually make it weigh more than carbon and the atom it combines with. The resulting weight will depend on the combining atoms eventually.
The maximum amount of XeF4 that could be produced is 0.5 moles.
XeF4 = Xe (g) 2 F2 (g) (g)
Xe and F2 have a mole ratio of 1:2. Because of this, the reaction would be limited by F2 when there is 1 mole of Xe and 1 mole of F2.
<h3>What is mole ratio?</h3>
The mole ratio is the ratio of any two compounds' mole amounts that are present in a balanced chemical reaction.
A comparison of the ratios of the molecules required to accomplish the reaction is given by the balancing chemical equation.
A mole ratio is a conversion factor used in chemical reactions to link the mole quantities of any two compounds. A conversion factor's numbers are derived from the balanced chemical equation's coefficients.
To learn more about mole ratio from the given link:
brainly.com/question/14425689
#SPJ4
All organisms need water, vitamins, minerals, and salt together to balance things out.