Answer:

Explanation:
Given data

To find
Mutual inductance of the two-coil system
Solution
The mutual inductance given as:
M= (-VΔt)/ΔI
Substitute the given values
So

Answer:
The new speed of the ball is 176.43 m/s
Explanation:
Given;
mass of the ball, m = 7 kg
initial speed of the ball, u = 5 m/s
applied force, F = 300 N
time of force action on the ball, t = 4 s
Apply Newton's second law of motion;

where;
v is new speed of the ball

Therefore, the new speed of the ball is 176.43 m/s
Answer:
Explanation:
The frequency is 16.0 Hz. That means that 16 of these waves can pass a single point in 1 second. We are given frequency and wavelength. The equation that relates them is
where f is frequency, v is velocity, and λ is wavelength. Putting all this together:
and solving for velocity,
v = 16.0(97.5) so
v = 1560 m/s. This wave can travel 1560 meters in a single second!!! Now that we know this velocity, we can use it in a proportion to find our unknown, which is how long, t, it will take to hear this sound 11000m away. (11 km is 11000m):
and cross multiply to get
1560t = 11000 so
t = 7.1 seconds
Answer:
F=ma is the relationship where, F is force, m is mass and a is acceleration.
Newton's second law states that the unbalanced force applied to the object accelerates the object which is directly proportional to the force and inversely to the mass.
If we apply force to a toy car then It will accelerate.
This is how Newton's second law of motion is verified.
The time when the two players will collide is 0.96 s.
The equation of motion of the two players is given as;
x1 = 0.1 m + (–3.9 m/s )t
x2 = –6.3 m + (2.8 m/s )t
The time when the two players collide, their displacement is equal or the difference in their position will be zero.

Thus, the time when the two players will collide is 0.96 s.
Learn more here: brainly.com/question/18033352